Advances in Nanoscale Analysis of Hf Doped Nb₃Sn Wires Using Atom Probe Tomography

<u>Laura Wheatley</u>¹, Benjamin Jenkins¹, Chiara Tarantini², Shreyas Balachandran², Nawaraj Paudel², William Starch², Peter Lee², David Larbalestier^{2,3}, Paul Bagot¹, Susie Speller¹, Michael Moody¹, and Chris Grovenor¹

¹Department of Materials, University of Oxford, UK

²Applied Superconductivity Center, NHMFL, Florida State University, Tallahassee, FL, USA

³College of Engineering, Florida A&M University, Florida State University, Tallahassee, FL, USA

E-mail: laura.wheatley@materials.ox.ac.uk

Abstract — The Future Circular Collider (FCC) will require Nb₃Sn dipole magnets that can operate up to 16 T [1], however, achieving this demanding specification will require conductors with an exceptionally high critical current density (Jc) of 1500 Amm⁻² whilst maintaining a residual resistivity ratio (RRR) of 150. Despite a great deal of research into new manufacturing techniques and heat treatments for Nb₃Sn wires, it remains a very challenging and ambitious target. All commercial Nb₃Sn strands use Ta and/or Ti doping for high field performance but in this study, we look at the impact of also adding Hf, which has been shown to increase flux-pinning and thus may help Nb₃Sn wires reach the FCC target specifications. To determine how Hf affects the superconducting properties of the Nb₃Sn it is important to use a nanoscale microscopy technique to visualize how the Hf is modifying the Nb₃Sn layer. This study uses Atom Probe Tomography (APT) to locate secondary phases, segregation at grain boundaries and discusses the origin of O in the sample.

Keywords (Index Terms) – Future circular collider, critical current, pinning force, atom probe tomography, backscattered detector, transmission electron microscopy, electron probe microanalyser, energy dispersive x-ray spectroscopy

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2023. Presentation given at Applied Superconductivity Conference, Honolulu, HI, USA, October 2022.