10thACASC/2nd Asian-ICMC/CSSJ Joint Conf., Okinawa, Jan. 6-9, 2020

National Projects on superconducting wires and their applications in Japan

Hiroaki Kumakura National Institute for Materials Science, Japan

- I. JST(Japan Science and Technology Agency)-MIRAI program "Social implementation of super-high field NMRs and DC superconducting cables for railway systems."
- II. JST-ALCA(Advanced Low Carbon Technology Research and Development) program.
- III. NEDO(New Energy and Industrial Technology Development Organization) program. Promotion of commercialization of high temperature superconductivity (HTS).

JST-MIRAI Program(Nov. 2017~)

By considering social and industrial needs, this program will set technologically challenging goals with clear targets designed to produce beneficial economic and social impacts.

Projects relating to applied superconductivity

Small start Type

- 1. Superconducting computing for low carbon AI
- 2. Low-ac-loss and robust high temperature superconductor technology

Large-scale Type

- 1. Social implementation of super-high field NMRs and DC superconducting cables for railway systems
- 2. Development of advanced hydrogen liquefaction system by using magnetic refrigeration technology.

Schedule of the development of super-high field NMR 1.3 GHz (30.5 T) NMR

Leader: H. Maeda, Riken

FY	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Superconductor Joint Cu As HTS	Joint technology (Shimoyama Group)									
		I				I		I		
	R&D: (1) Pers tec (2) 30 T (3) Ope LTS	↓ istent-mo hnology -class HTS ration of /HTS NM	ode HTS ir 5 inner co a compac R (driven	nner coil il technol t 1 GHz-c -mode)	ogy lass	I I I I ¥		 ₩		
	(4) Con mo	de 1.3 GF	esign of a Iz NMR m	persister lagnet	nt- : i	1.3 GHz inner coils	5	1 n	.3 GHz nagnet	
		I V	,	NMF	R evaluati	on (Ishii G	Group)			→

Development of Persistent-mode HTS inner coil technology

Excitation test of a 30 T model magnet

30 T-magnet (model of the 1.3 GHz NMR magnet)

- 30 T generation without normal voltage on the REBCO coil
- The REBCO coil survived from a 31 T quench.

Development of Superconducting joints

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2020. Presentation AT-1 given at ACASC/Asian-ICMC, 6-9 January 2020, Okinawa, Japan.

K. Ohki et al., SUST 30(2017)115017.

Development of BSCCO-BSCCO joint Superconducting Joints Connecting DI-BSCCO[®] Tapes Via Bi-2223 Thick Film Layer

J. Shimoyama et al., Aoyama Gakuin Univ.

Y. Takeda, et al., Appl. Phys. Express 12(2019)023003.

Superconducting Joints Connecting DI-BSCCO[®] Tapes Via Bi2223 Thick Film Layer

Straight Joint

JST ALCA Program

(Advanced Low Carbon Technology Research and Development) Programs. [Five projects are in progress]

- Development of Low-Cost REBCO Coated Conductors T. Doi, Kyoto University
- System of Superconducting Rotating Machines for Transport Equipment that Supports Low Carbon Society *T. Nakamura, Kyoto University*
- Removing Iron Oxide Particles from Boiler Feed-Water of Thermal Power Plants S. Nishijima, Fukui University of Technology
- Development of REBCO Fully Superconducting Rotary Machines *M. Iwakuma, Kyushu University*
- Development of High Performance MgB₂ Long Conductors H. Kumakura, National Inst. Material Science

Development of low-cost YBa₂Cu₃O₇ tape conductors

T. Doi et al., Kyoto Univ.

Conventional coated conductor

Template is insulative \implies Stabilizing Ag and Cu layer is required on REBCO.

Concept

By using $\{100\}<001>$ textured pure Cu tape as the template of in-plane aligned REBCO and using conductive Ni and Nb-doped SrTiO₃ as a buffer layers, the textured Cu tape can also work as a stabilizer layer.

The new structure does not require the expensive Ag.

Fabrication method of new type coated conductor

	Ni	Nb-doped SrTiO ₃	YBa ₂ Cu ₃ O ₇		
Substrate	$\{100\} < 001 > \text{text}$	tured pure Cu / SS316 lamination tape			
Deposition Method	electroplating	PLD (Pulse Laser Deposition)			

270

(110)_{Nb-STO} pole figure

{001}<100> textured Cu layer can be obtained by cold rolling and heat treatment(recrystalization).

 $(102)_{YBCO}$ pole figure

SEM micrograph of the YBCO surface of the sample

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2020. Presentation AT-1 given at ACASC/Asian-ICMC, 6-9 January 2020, Okinawa, Japan.

I-V characteristic of the YBCO/Nb-STO/Ni/Cu/SS316 tape

J_c=2.5 MA/cm² at 77 K, in self field

The measured voltages of the sample were lower than those of the calculated values by *n*-value model in normal state region ($I > I_c$).

Some current flew into the Cu tape through the conductive Nb-STO and Ni buffer layers.

Development of high performance MgB₂ wires

Fabrication of MgB₂ wires by the Internal Mg diffusion(IMD) method

NÌMS

Development of high density PIT MgB₂ wires

HITACHI Inspire the Next

Conventional

Mechanical milling Packing factor ~ 0.82

Fabrication and evaluation of 100m-1km class MgB₂ wire

HITACHI Inspire the Next

New evaluation technique of MgB₂ wires

Hybrid method of visualization of 3-dimentional microstructure and I_c distribution [with X-ray micro CT and scanning Hall probe microscope] (T. Kiss et al, Kyusyu Univ.)

Analyses of 10-filamentary PIT MgB₂ wire(Hitachi Ltd.)

NEDO Identified Four Areas for Technology Development to Promote Commercialization of High-Temperature Superconductivity

 Promotion of Commercialization through Comprehensive Implementation of Fundamental and Demonstration Technology Development – (Fiscal year:2016~2020)

- 1. R&D for the practical use of superconductivity cable systems (In the field of electric power)
- 2. Demonstrations of superconductivity DC power transmission system (In the field of transportation)
- 3. The application of HTS to magnetic resonance imaging (MRI) (In the field of industrial technology)
- 4. The technology development of HTS wire to improve the magnetic field characteristics and to reduce the cost with the aim of promoting rapid commercialization.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2020. Presentation AT-1 given at ACASC/Asian-ICMC, 6-9 January 2020, Okinawa, Japan.

The application of HTS to MRI

1/3 scale 3T REBCO He-free MRI (2016)

High resolution Imaging of mouse baby Length: ~25mm

Conductors: REBCO IBAD C.C. (Fujikura)

Pancake coil

Development of half size He-free 3T HTS(REBCO) MRI

Specification of the half size 3T HTS Coil

Inner diameter	580mm
Maximum outer diameter	1200mm
Axial length	980mm
Operating central field	2.9T
Maximum field	Bzmax=4.2T,Brmax=2.9T
Current density of coil	121A/mm2
Inductance	145H
Stored energy at operation	1.6MJ
REBCO wire Total Length	70km
Field uniformity on design	1.7ppm/250mmDSV
Leak magnetic field area	2.5mX3.4m (0.5mT)

They fabricated 272 pancake coils and used 220 of them for the construction.

Photograph of the half-size active shield-type 3T coil

Cooling and excitation of half size 3T magnet

Photograph of a Cryostat (Max:W1881-Z1672-H1790)

Initial cooling properties of half-size 3T magnet

Excitation test of the coil

- Temperature <6K
- Voltage of 25mV was generated at the joints due to the shear stress.
- They will change the joint structure and carry out an excitation test again.

Program to promote rapid commercialization of HTS - Development of long length Eu-123 coated conductors having artificial pinning centers -

Eu-123 layer was deposited with PLD method.

IBAD substrate tape

Hot wall heating is applied to obtain stable temperature during PLD.

Artificial pinning centers: BaHfO₃ (Target material: EuBa₂Cu₃O_{7-δ}+BaHfO₃)

http://www.fujikura.co.jp/products/newbusiness/superconductors/01/superconductor.pdf http://www.fujikura.co.jp/rd/gihou/backnumber/pages/__icsFiles/afieldfile/2019/08/02/132_R6.pdf

Microstructure and *I*_c of Eu-123 coated conductors with artificial pinning centers

Two types of PLD deposition

Table 1. Specifications of the samples used for evaluation of the in-field characteristics.

Sample Index	REBCO layer	Deposition rate [nm/sec]	REBCO thickness [µm]	<i>I</i> _c (77.3 K, s. f.) [A/cm-w]	<i>T</i> _c [K]
FAST	EuBCO- BHO	20-30	2.2	387	91.2
SLOW	EuBCO- BHO	5-15	1.1	250	91.8
Pure	GdBCO	10-20	1.9	575	93.1

depo. cond. SLOW

depo. cond. FAST

BHO nano rods // c-axis

BHO short nano rods

*I*_c homogeneity of Eu-123 coated conductor with artificial pinning centers

200 80 150 60 *n*-values /。[A] 100 40 50 20 DC 4-probe method 77 K 0 Ο 100 200 300 400 500 600 0 Position [m] $I_{\rm c}$ tolerance to bending strain Scattering of I_c in the 5 tapes 1,2 10 - Lot #1 9 - Lot #2 Lot #3 8 Lot #4 7 0.8 - Lot #5 I_c/I_c (77K, s. f.) 6 [%]/₂ 0.6 5 GdBCO-1 GdBCO-2 4 0.4 GdBCO-3 З EuBCO-BHO-1 0.2 2 EuBCO-BHO-2 77.3 K, s.f. EuBCO-BHO-3 30 K, B//c 1 0 0 10 15 5 0 2 6 8 4 Bending Radius [mm] *B* [T]

🌈 Fujikura