IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021.

Overcoming Challenges in Utilizing High-Performance REBCO Tapes in Ultra-high Magnetic Field Applications

Venkat Selvamanickam

Department of Mechanical Engineering, Advanced Manufacturing Institute, Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.

Email: selva@uh.edu

Abstract — After a steady progress over two decades, there is a recent spurt in the use of REBCO tapes in several high magnetic field applications at 20 T and beyond. While today's REBCO tapes meet the specification of a critical current (I_c) of 150 A/4mm at 20 K, 20 T, their high cost (triple digits \$/kA-m) limits widespread use. Since most ultra-high field applications use stacks of tapes to reach operating currents of 10+kA, one direct path to reduce cost is to use fewer tapes with substantially higher I_c in high magnetic fields. Using optimum Ba content in Zr- and Hf-added 4+µm films, REBCO tapes with 3 – 5x I_{cr} , up to 1,830 A/4 mm at 4.2 K, 20 T have been demonstrated. The challenge in achieving this performance in long lengths is in assuring a consistent growth of BMO nanorods in the 4+ µm thick films. A problem in controlling the relative amounts of REBCO and BZO is that BZO nanorods are in fact solid solution Ba²⁺($Zr^{4+}_{1-2}RE^{3+}_2$)O_{3-δ} perovskites. Overcoming the challenges in nanoscale control in long REBCO tapes necessitates the use of in-situ metrology methods for real-time monitoring of REBCO film growth and BMO defects. We have developed reel-to-reel 2D X-ray Diffraction and Raman Spectroscopy for such real-time monitoring. Along with machine learning methods, such metrology tools can provide critical feedback to control the nanoscale defect structure of high-performance REBCO tapes for uniform high in-field I_c .

This work is supported by U.S. Department of Energy awards DE-SC0016220, DE-EE0007869, DE-SC0020717, and DE-AR0001374 and U.S. Naval Sea Systems Command award N68335-21-C-0525.

Keywords (Index Terms) — Critical current, flux pinning, artificial pinning centers, REBCO.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Submitted November 21, 2021; Selected December 08, 2021. Invited presentation MS-2 given at CCA 2021, October 11 – 15, 2021, Virtual.