Probing the Effect of Interface on Pinning Efficiency of 1D BaZrO₃ and BaHfO₃ Artificial Pinning Centers in YBa₂Cu₃O_{7-x} Thin Films

<u>Judy Wu¹</u>, Bibek Gautam¹, Mary Ann Sebastian², Shikhar Mishra³, Jijie Huang³, Shihong Chen^{1,5}, Javier Baca¹, Joseph Prestigiacomo⁴, Timothy Haugan², HaiyanWang³, Mike Osofsky⁴, and Zhongwen Xing⁵

¹ Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA

² U.S. Air Force Research Laboratory, Propulsion Directorate, WPAFB, OH 45433, USA

³ School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA

⁴ US Naval Research Laboratory, 4555 Overlook Ave, SW Washington, DC 20375, USA

⁵ College of Engineering and Applied Science, Nanjing University, Nanjing, Jiangsu 210093, China

E-mail: jwu@ku.edu

Abstract – C-axis aligned one-dimensional artificial pinning centers (1D APCs) have proven to provide an effective solution to reduce the magnetic field (H) orientation-dependence of the critical current density, J_c, an issue stemming from the layered structure of YBa₂Cu₃O_{7-x} (YBCO). A fundamental question arises as to what determines the pinning efficiencies of a 1D APC? In order to shed light on this question, 1D APCs of BaZrO₃ (BZO) and BaHfO₃ (BHO) of comparable lateral dimensions (5-6 nm) were selected in our recent studies on the 1D APC/YBCO interface and its impact on the pinning efficiency of these 1D APCs in the 1D APC/YBCO nanocomposite films with APC doping levels varied in the range of 2-6 vol.%. We have found that the BZO/RE-123 interface is semi-coherent with a large number of dislocations consistent with prior reports. In contrast, the BHO/RE-123 interface remains coherent even at high BHO doping levels. This difference was found to have a profound effect on the pining efficiency of BZO and BHO 1D APCs evaluated quantitatively from the maximum pinning force density (F_{pmax}) at H_{max} (H//c) and the ratio between the H_{max} and the accommodation field H* estimated from the TEM characterization of the 1D APC concentration. Importantly, a record high F_{p.max}~183.0 GNm⁻³ at H_{max}>9.0 T (instrument limit) and 65 K was obtained in BHO/YBCO nanocomposites, which is significantly higher than the F_{p.max}~73.0 GNm⁻³ at H_{max} =5.0 T in its BZO/YBCO counterpart. Moreover, the H_{max}/H^* ratio in both cases decreases monotonically with APC doping. However, it is up to 2.5-3.5 in the BHO/YBCO case in contrast to the maximum of 0.6-0.7 in the BZO/YBCO case. This result reveals the critical effect of APC/YBCO interfaces on the pinning efficiency of 1D APCs.

Acknowledgements:

This research was supported in part by NSF contracts Nos: NSF-DMR-1337737 and NSF-DMR-1508494, the AFRL Aerospace Systems Directorate, the Air Force Office of Scientific Research (AFOSR), and the U.S. National Science Foundation (DMR-1565822) for TEM characterization.

Keywords (Index Terms) – YBCO nanocomposite film, artificial pinning center, vortex pinning efficiency, coherent interface.

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 46, February 2019. Received December 18, 2018; selected December 20, 2018. Reference STP626; Category 5. Invited presentation 1MOr2C-01 given at ASC 2018, October 28-November 02, 2018, Seattle (USA). Preliminary presentation to be replaced by an annotated presentation.