IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Invited poster SQ-P01-INV presented at ISEC 2015, Nagoya, Japan, July 6 – 9, 2015.

A Magnetoencephalography System Having Superconductively Shielded SQUID Magnetometer

Yong-Ho Lee*, K. K. Yu, H, Kwon, J. M. Kim, S. K. Lee, S. J. Lee, K. Kim, and M. Y. Kim Korea Research Institute of Standards and Science, Daejeon, Republic of Korea

ABSTRACT

We developed a whole-head SQUID magnetometer system having a superconductive shield to measure magnetoencephalography (MEG) signals inside a thin magnetically shielded room.

1) A robust and compact wire-wound axial magnetometer having a field sensitivity of 2 fT/ \sqrt{Hz} at 100 Hz 2) Superconductive shield is made of 1-mm thick Pb plate with a shielding factor in the range of 20~500,

Helmet magnetometer system

Sensor helmet

Shielding factor w/o inward brim

Channel(No

- depending on the position inside the helmet shield
- 3) Enhancement of the shielding performance can be done by introducing the inward extension at the brim 4) MEG measurement could be done with comparable signal quality with the conventional first-order axial
 - gradiometer system, and MEG can also be measured with the MSR door open

MOTIVATION

To develop an MEG system having the following technical features :

- Thinner and lighter magnetically shielded room
- Comparable signal quality with the axial gradiometer system
- Integration with cryocooler on top of the dewar

Superconductively shielded helmets

Sensor helmet

Future MEG system

Cryocooler

Superconductive shield

Frequency (Hz)

Magnetometer at a distance d from the supercon. surface \rightarrow Mirror image in the superconductive surface at –d \rightarrow SQUID output is like an axial gradiometer with a baseline of 2d

Helmet with inward extension at the brim

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (s)

Simulation of shielding (vertical field)

30

Helmet w/o inward extension

20

X-axis (cm

Helmet with inward brim

X-axis (cm)

10

<Field arrow lines>

Field is weaker and its direction is more tangential to the magnetometer planes: much less noise at the magnetometers than those without inward brim.

lsofield contour lines>

Auditory source is well localized!

SUMMARY

- 1. Advantage of superconductive shield: shielding performance is frequency independent
- 2. Shielding factor is in the range of 20~500 without inward extension at the brim
- 3. By extending the inward brim, the shielding performance and MEG signal quality improved much
- 4. With the inward brim, MEG can be measured with MSR door open
- 5. Superconductive shielding can reduce the thickness of magnetically shielded room (MSR) for an economic MEG system
- 6. Future development : Cryocooler-operated MEG system with thinner MSR wall thickness. The noise from the cryocooler can be reduced much by the superconductive shield