Influence of the Oxygen Partial Pressure on the Phase Evolution During Bi-2212 Wire Melt Processing

C. Scheuerlein¹, J. Andrieux², M.O. Rikel³, J. Kadar⁴, C. Doerrer¹, M. Di Michiel⁵, A. Ballarino1, L. Bottura¹, J. Jiang⁶, F. Kametani⁶, E.E. Hellstrom⁶, D.C. Larbalestier⁶

¹CERN, CH 1211 Geneva 23, Switzerland
²Université Claude Bernard Lyon 1, LMI–UMR CNRS No. 5615, 69622 Villeurbanne, France
³Nexans SuperConductors GmbH, Germany
⁴Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
⁵The European Synchrotron, ESRF, 71 avenue des Martyrs, 38000 Grenoble, France
⁶National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA

E-mail: Christian.Scheuerlein@cern.ch

Abstract — We have studied the influence of the oxygen partial pressure pO_2 up to 5.5 bar on the phase changes that occur during melt processing of a state-of-the-art Bi-2212 multifilamentary wire. Phase changes have been monitored *in situ* by high energy synchrotron X-ray diffraction (XRD). We found that the stability of Bi-2212 phase is reduced with increasing pO_2 . For $pO_2>1$ bar a significant amount of Bi-2212 phase decomposes upon heating in the range 400 to 650 °C. The extent of decomposition strongly increases with increasing pO_2 , and at $pO_2=5.5$ bar Bi 2212 decomposes completely in the solid state. Textured Bi 2212 can be formed during solidification when pO_2 is reduced to 0.45 bar when the precursor is molten. Since the formation of current limiting second phases is very sensitive to pO_2 when it exceeds 1 bar, we recommend to reduce the oxygen partial pressure below the commonly used $pO_2=1$ bar, in order to increase the pO_2 margins and to make the overpressure process more robust.

Keywords (Index Terms) — Bi-2212, melt processing, XRD.