IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. EUCAS 2015 Invited poster 3A-LS-O1.9.

Open Source Codes for Computing the Critical Current of Superconducting Devices

Karlsruher Institut für Technologie

(3A-LS-01.9)

Víctor M. R. Zermeño, Salman Quaiyum, Francesco Grilli Karlsruhe Institute of Technology, Karlsruhe, Germany

A FreeFem++ code to calculate the Ic of superconducting cables 1 // | | 2 // By Victor Zermeno and Salman Quaiyum doi:10.1109/TASC.2015.XXXXXXX // 3 //Declaration of parameters and variables for geometry, Physics and mesh // 4 bool s=0; string c="AVG"; if(s){c="MAX";}; //Ic criteria: s=(1->MAX,0->AVG) 5 real Jc0=4.75e10, Bc=35e-3, b=0.6, k=0.25; // Jc(B) parameters 6 int ns=10, ny=ns/2; // ns=number of strands in cable 7 real th=1e-6, sw=1.8e-3, rg=4e-4, sg=1e-4, n=21, tolAz=1e-9, tolp=1e-9; 8 real I0=Jc0*th*sw, x0=-sw-rg/2, y0=-((th+sg)*ny-sg)/2, E=0, Ec=1e-4, err; 9 real[int] XC(ns), YC(ns), Ics(ns), p(ns²), pn(p.n); p=0.9; pn=0.9; 10 int[int] cm(1), hm(ns), vm(ns); cm=50; hm=-50; vm=-1; // Mesh parameters 12 for(int i=0; i<ns; i++){XC[i]=x0+(rg+sw)*(i/ny); YC[i]=y0+(sg+th)*(i%ny);}</pre> 13 border bb (t=0, 2*pi) {x=20*sw*cos(t); y=20*sw*sin(t); label= 1;} 14 border top (t=0, 1; i) {x=XC[i]+t*sw; y=YC[i]+th; label=i+2;} 15 border right (t=0, 1; i) ${x=XC[i]+sw};$ y=YC[i]+(1-t)*th; label=i+2;} 16 border bottom(t=0, 1; i) $\{x=XC[i]+(1-t)*sw; y=YC[i]\}$ label=i+2;}

17 border left (t=0, 1; i) {x=XC[i]; y=YC[i]+t*th; label=i+2;}
18 mesh Th=buildmesh(bb(cm)+top(hm)+right(vm)+bottom(hm)+left(vm));
19 //////////////////////// Build FEM Solution Space ////////////////////////////////////
20 fespace Vh(Th,P2); // Quadratic elements for Az
21 Vh Az, AzO, v;
22 fespace Wh(Th,Pldc); // Piecewise-linear discontinuous elements for J
23 Wh J=Jc0;
24 p[Th(0,0).region]=0; // p=0 in the Air region
25 //////// JcB and J as functions of Az using the dummy variable u ////////
26 macro JcB(u) Jc0/(1+sqrt((k*dy(u))^2+(-dx(u))^2)/Bc)^b //
27 macro J(u) JcB(u)*(p[region])//
28 //PDE(in weak form) Div(Grad(Az))+mu0*Jc(B)*p=0 and boundary condition Az=0
29 problem Pmodel(Az,v)=int2d(Th)(dx(Az)*dx(v)+dy(Az)*dy(v))
30 -int2d(Th)(4e-7*pi*J(Az0)*v)+on(1,Az=0);
31 ////////////////////////////////////
32 while(abs(p.max-1)*s+abs(pn(0:ns:1).sum/ns-1)*(1-s)>tolp){ // Ic criterion
33 err=1; // Reset err variable
34 while(err > tolAz){ // Self consistency loop
35 Az0=Az; // Update old Az estimate
36 Pmodel; // Run FEM problem
37 for(int j=0; j < ns; j++){ // Ic and p value of j-th strand
38 Ics(j)=int2d(Th,j)(JcB(Az));
39 p(j)=I0/Ics(j);}
39p(j)=I0/Ics(j);}40Az0=Az-Az0;// Difference between old and new Az estimates
39p(j)=I0/Ics(j);}40Az0=Az-Az0;// Difference between old and new Az estimates41err=Az0[].linfty;}// Error defined using the L-infinity norm
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; i++){pn(i)="p(i)^n;}</pre"></ns;></pre>
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; 43="" average="" cable<="" e="pn(0:ns:1).sum/ns*Ec;" electric="" field="" i++){pn(i)="p(i)^n;}" in="" pre=""></ns;></pre>
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; 43="" 44="" average="" cable="" current="" e="pn(0:ns:1).sum/ns*Ec;" electric="" field="" i++){pn(i)="p(i)^n;}" i0="2*I0/((1+p.max)*s+(1+(E/Ec)^(1/n))*(1-s));}//Net" in="" pre="" strand<=""></ns;></pre>
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; 43="" 44="" 45="" <="" and="" average="" cable="" current="" data="" e="pn(0:ns:1).sum/ns*Ec;" electric="" field="" i++){pn(i)="p(i)^n;}" i0="2*I0/((1+p.max)*s+(1+(E/Ec)^(1/n))*(1-s));}//Net" in="" output="" plotting="" post="" processing:="" strand="" td=""></ns;></pre>
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; 43="" 44="" 45="" <="" and="" average="" cable="" current="" data="" e="pn(0:ns:1).sum/ns*Ec;" electric="" field="" i++){pn(i)="p(i)^n;}" i0="2*I0/((1+p.max)*s+(1+(E/Ec)^(1/n))*(1-s));}//Net" in="" output="" plotting="" post="" processing:="" strand="" td=""></ns;></pre>
<pre>39 p(j)=I0/Ics(j);} 40 Az0=Az-Az0; // Difference between old and new Az estimates 41 err=Az0[].linfty;} // Error defined using the L-infinity norm 42 for(int i=0; i<ns; 43="" 44="" 45="" <="" and="" average="" cable="" current="" data="" e="pn(0:ns:1).sum/ns*Ec;" electric="" field="" i++){pn(i)="p(i)^n;}" i0="2*I0/((1+p.max)*s+(1+(E/Ec)^(1/n))*(1-s));}//Net" in="" output="" plotting="" post="" processing:="" strand="" td=""></ns;></pre>

Magnetic flux density in the considered Roebel cable [T]

Comparison of results given by different implementations					
Software	$Ic_{MAX}(A)$	$Ic_{AVG}(A)$	$ct_{MAX}(s)$	$ct_{AVG}(s)$	
Comsol	534.65	538.93	6.00	5.00	
FreeFEM++	535.76	537.12	34.30	45.01	
MATLAB	535.83	53			
Octave	535.83	539.25	0.13	0.13	

Ic=critical current, ct=computing time (excluding plotting).

4.5

imes10⁹

Application:

Effect of the angular dependence of Jc(B) in calculating the I_c of a 10-strand Roebel cable.

I_c of a 12 mm-wide Roebel

24

IcOld=Ic;

$\boldsymbol{B}_{i} = \frac{\mu_{0}}{2 \pi} \sum_{j \neq i} PI_{c}(\boldsymbol{B}_{j}) \frac{\{-(y_{i} - y_{j}), x_{i} - x_{j}\}}{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}}$	
1 % A MATLAB code to calculate the Ic of superconducting cables	0/0
2 % By Victor Zermeno and Salman Quaiyum doi:10.1109/TASC.2015.XXXXXX	00
3 %% Initialization and declaration of parameters and variables	% %
4 clc; clear all; close all;	
5 s=0; c='AVG'; if (s==1) c='MAX';end; %Ic criteria: s=(1->MAX,0->AV	G)
6 Jc0=4.75e10; Bc=35e-3; k=0.25; b=0.6; % Jc(B)parameter	rs
7 m=100; ns=10; th=1e-6; sw=1.8e-3; rg=4e-4; sg=1e-4; n=21; % parameter	rs
8 mu0=4e-7*pi; Ec=1e-4; tolIc=1e-9; tolp=1e-9; %mu0, Ec criterion, toleranc	es
9 IO=JcO*sw*th; P=0.5*ones(1,m*ns); E=0; % Initial values for IO, P and	E
10 [Bx,By,Ic]=deal(zeros(1,m*ns)); %Magnetic flux density and critical curre	nt
11 %% Geometry creation: lines of current are located at the points (Rx,Ry)	% %
12 xRange=(1-m:2:m-1)*sw/2/m; % Span of values for x coordina	te
13 Rx=[repmat(xRange-(rg+sw)/2,[1 ns/2]),repmat(xRange+(rg+sw)/2,[1 ns/2])];	
14 yRange=((2-ns):4:(ns-2))*sg/4; % Span of values for y coordina	te
<pre>15 Ry=[reshape(repmat(yRange,m,1),1,[]),reshape(repmat(yRange,m,1),1,[])];</pre>	
16 %% Definition of auxiliary variables for field calculation	%%
$17 r2=bsxfun(@minus,Rx,Rx').^{2}+bsxfun(@minus,Ry,Ry').^{2}; r2=(x-x')^{2}+(y-y')$	^2
18 $xn=bsxfun(@minus,Rx,Rx')./r2; xn(isnan(xn))=0;$ % if(r2>0,(x-x')/r2,	0)
19 yn=bsxfun(@minus,Ry,Ry')./r2; yn(isnan(yn))=0; % if(r2>0,(y-y')/r2,	0)
20 %% Iterative solution	%%
21 while (abs(max(P)-1)*s+abs(E/Ec-1)*(1-s)>tolp) % Ic criteria lo	op
22 err = 1; % Error res	et
23 while(err > tolIc) % Self consistency lo	op

 $25 \qquad T_{c} = (s_{w}*t_{h}/m)*(J_{c}0)/(1+s_{a}r_{c}t_{b})/(2+B_{v})/(2+B_{v})/(B_{c}$

	$Ic_{MAX}(A)$	$Ic_{AVG}(A)$
Precise Jc(B)	1005	1035
Simplified Jc(B)	1045	1067

 θ (°) Field dependence of I_c for a 12 mm tape.

This and more codes available at

 I_c (A)

23	25 $1C = (SW^{*}CII/III)^{*}(0CU^{*}/(1+SQLC((K^{*}BX), Z+By, Z)^{*}/BC), D))$	SIUCAL IC(D)
26	<pre>26 P=reshape((I0./(reshape(Ic,m,ns)'*ones(m,m)))',1,m*ns)</pre>); %P values
27	27 It=P.*Ic; % Local curr	rent in strand
28	28 Bx=-mu0/(2*pi)*It*yn; % Magnetic	c flux density
29	29 By=mu0/(2*pi)*It*xn;	
30	30 err=norm(IcOld - Ic); % Error. It compares old and new	w Ic estimates
31	31 end	
32	32 E=Ec*abs(sum(P(1:m:end).^n)/ns); % Average electric fie	eld in cable
33	33 I0=2*I0/(s*(1+max(P))+(1+(E/Ec)^(1/n))*(1-s)); %Net currer	nt in strand
34	34 end	
35	35 % Post Processing: Output data and plotting	00 00
35 36	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c);</pre>	9, 9, 9, 9,
35 36 37	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r</pre>	%% ns));
35 36 37 38	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P));</pre>	%% ns));
35 36 37 38 39	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P)); 39 X=reshape(Rx,ns,[])/1e-3;</pre>	%% ns));
35 36 37 38 39 40	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P)); 39 X=reshape(Rx,ns,[])/1e-3; 40 Y=reshape(Ry,ns,[])/1e-3;</pre>	%% ns));
35 36 37 38 39 40 41	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P)); 39 X=reshape(Rx,ns,[])/1e-3; 40 Y=reshape(Ry,ns,[])/1e-3; 41 Z=(ns/sw/th)*reshape(It,ns,[]);</pre>	%% ns));
35 36 37 38 39 40 41 42	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P)); 39 X=reshape(Rx,ns,[])/1e-3; 40 Y=reshape(Ry,ns,[])/1e-3; 41 Z=(ns/sw/th)*reshape(It,ns,[]); 42 mesh(X,Y,Z,'MeshStyle','column','FaceColor','none','LineWidth'</pre>	%% ns)); ',3); % J(x,y)
35 36 37 38 39 40 41 42 43	<pre>35 %% Post Processing: Output data and plotting 36 fprintf('Ic(cable)= %0.2f A (%s criteria)\n',ns*I0,c); 37 fprintf('Avg(E)= %0.6f microV/cm\n',abs(sum(P(1:100:end).^n)/r 38 fprintf('max(P)= %0.6f\n',max(P)); 39 X=reshape(Rx,ns,[])/1e-3; 40 Y=reshape(Ry,ns,[])/1e-3; 41 Z=(ns/sw/th)*reshape(It,ns,[]); 42 mesh(X,Y,Z,'MeshStyle','column','FaceColor','none','LineWidth' 43 xlabel('x [mm]'); ylabel('y[mm]'); zlabel('J [A/m^2]');</pre>	%% hs)); ',3); % J(x,y)

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. EUCAS 2015 Invited poster 3A-LS-O1.9.

Karlsruher Institut für Technologie

Current modeling activities (3A-LS-01.9)

Víctor M. R. Zermeño and Francesco Grilli, Karlsruhe Institute of Technology, Karlsruhe, Germany

Magnetization of crossed HTS stacks

Maximum possible trapped field in HTS stacks

Trapped field in a round stack composed of 144-tapes (ϕ =12 mm). Three different separations between the HTS layer are considered: 50 μm, 100 μm and 200 μm.

A distance of 100 µm between HTS layers is assumed

Current distribution in multi-filamentary wires

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu