Design and Implementation of an SFQ-based Single-chip FFT Processor

T. Ono, H. Suzuki, Y. Yamanashi, and N. Yoshikawa
Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan
E-mail: ono-tomohiro-cw@ynu.jp

Abstract

We have been working on the development of a high-speed FFT processor using single-flux-quantum (SFQ) logic circuits. In our previous studies, we designed and demonstrated a 4-bit butterfly processor, a data-shuffling circuit, and a twiddle factor ROM for 4-bit 8-point FFT using the AIST $10 \mathrm{kA} / \mathrm{cm}^{2} \mathrm{Nb}$ advanced process 2 (ADP2) at maximum frequencies of $51.6 \mathrm{GHz}, 59.5 \mathrm{GHz}$, and 51.5 GHz , respectively. In this study, to complete the FFT processor design, we designed and demonstrated residual component circuits called a rounding circuit and a data buffer at a target frequency of 50 GHz . We also designed and experimentally confirmed the operation of an SFQ-based single-chip FFT processor integrating all the component circuits.

Keywords (Index Terms)—butterfly processing circuit, FFT, RSFQ, superconducting devices, SFQ circuit, Josephson integrated circuit.

