ED1-1-INV

Multichannel on-scalp MEG based on high-Tc SQUID magnetometers

*Dag Winkler¹, Justin F Schneiderman², Alexei Kalabukhov¹, Maxim Chukharkin¹, Minshu Xie¹, Silvia Ruffieux¹, Christoph Pfeiffer¹

Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Sweden¹ MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy and the University of Gothenburg, Sweden²

Recent development of high- T_c SQUID magnetoencephalography (MEG) has shown the potential of the technique both as a possible replacement for the traditional low- T_c systems [1-5] and for increased information capacity from the close proximity to the brain [6]. SQUID magnetometers made from single layer high- $T_{\rm c}$ superconductors usually have an order of magnitude or more higher noise than their multilayer low-T_c counterparts. However, for MEG applications, the simpler cryogenic requirements make it possible to decrease the sensor-to-head distance from 20 mm to approximately 1 mm, retaining the signal-to-noise ratio. Furthermore, higher spatial resolution could be obtained and higher moments of the sources could be resolved from near-field measurements. Here, we report on benchmarking of high- T_c vs. low- T_c MEG and on the development of a multichannel high-T_c MEG system. The system is configured with a densely-packed set of seven 8.6 mm x 9.2 mm high-T_c SQUID magnetometers positioned in a slightly concave hexagonal pattern on a sapphire window connecting thermally to a liquid nitrogen bath. A method of direct feedback injection to the SQUID loops was chosen to minimize crosstalk between the sensors. To improve the field sensitivity, we have developed a new method to produce high-T_c flux transformers for flip-chip arrangements for the next generation MEG system. Finally, we are investigating the possibility to use high- T_c nano-wire based SQUIDs as magnetometers for MEG in future systems.

- 1. Y. Zhang et al., Brain Topogr., vol. 5, 379 (1993).
- 2. H. J. Barthelmess et al., IEEE Trans. Appl. Supercond., vol. 11, 657 (2001).
- 3. F. Öisjöen et al., Appl. Phys. Lett., vol. 100, 132601 (2012).
- 4. M. I. Faley et al., IEEE Trans. Appl. Supercond., vol. 23, 1600705 (2013).
- 5. J. Dammers et al., Appl. Phys. Lett., vol. 104, 213705 (2014).
- 6. J. F. Schneiderman, J. Neurosci. Methods, vol. 222, 42 (2013).

Keywords: magnetoencephalography, high-Tc, SQUID, on-scalp

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Received January 18, 2018; Selected January 24, 2018. Reference STP622. Plenary presentation ED1-1-INV was given at ISS 2017, December 13-15, 2017, Tokyo, Japan.