Synthesis and Bulk Properties of Oxychloride Superconductor Ca_{2-x}NaxCuO₂Cl₂

N. D. Zhigadlo⁽¹⁾, J. Karpinski⁽¹⁾, S. Weyeneth⁽²⁾, R. Khasanov⁽²⁾, S. Katrych⁽¹⁾, P. Wägli⁽¹⁾ and H. Keller⁽²⁾

 (1) Laboratory for Solid State Physics, ETH Zürich, 8093 Zurich, Switzerland e-mail: <u>zhigadlo@phys.ethz.ch</u>
(2) Physik-Institut der Universität Zürich, 8057 Zürich, Switzerland

Abstract - A series of polycrystalline samples and submillimeter size single crystals of a cuprate oxychloride Ca_{2-x}NaxCuO₂Cl₂ (Na-CCOC) with values of Na content ranging from underdoped to optimally doped regions were synthesized at pressure of 30-55 kbar and temperature of 1250-1700 °C. A systematic variation of the transition temperature Tc with a maximum value of 29 K for $x \approx 0.20$ has been found as a function of Na content. In order to check the role of the apical oxygen for high-temperature superconductivity, we performed muon-spin rotation and magnetization studies of the in-plane magnetic penetration depth λ_{ab} for Ca₂₋ _xNaxCuO₂Cl₂ samples with $x\approx 0.11, 0.12, 0.15, 0.18$, and 0.19. The absolute value of the in-plane magnetic penetration depth at T=0 was found to increase with decreasing doping from $\lambda_{ab}(0)=316(19)$ nm for the $x\approx 0.19$ sample to lab(0)=430(26) nm for the $x\approx 0.11$ one. Based on a comparison of the present Na-CCOC data with the data of $La_{2-x}Sr_xCuO_4$ cuprate superconductors, it is concluded that replacing of apical oxygen by chlorine decreases the coupling between the superconducting CuO₂ planes, leading to an enhancement of the twodimensional properties of Na-CCOC. The torque studies implies that the anisotropy coefficient γ =84 of Ca_{1.82}Na_{0.18}CuO₂Cl₂ single crystals is much more enhanced compared to the structurally related La_{1.82}Sr_{0.18}CuO₄ γ is much lower, i.e., $\gamma \approx 11$.

Manuscript received Nov. 23, 2007; accepted Dec. 21, 2007. Reference No. ST14, Category 2. Paper submitted to Proceedings of EUCAS 2007.