A Comparative Study of Sr_{1-X}k_xfe₂as₂ and Smfeaso_{1-X}f_x Superconducting Tapes by Magneto-Optical Imaging

Chao Yao¹, Chunlei Wang¹, Xianping Zhang¹, Dongliang Wang¹, He Lin¹, Qianjun Zhang¹, Yanwei Ma¹, Yuji Tsuchiya², Yue Sun² and Tsuyoshi Tamegai²

¹Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering,
Chinese Academy of Sciences, Beijing 100190, China
²Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan

E-mail: ywma@mail.iee.ac.cn

Abstract - Using the magneto-optical imaging (MOI) technique, the intergranular critical current density J_c at various temperatures and the homogeneity of the local structure of the superconducting cores for the powder-in-tube (PIT) $Sr_{1-x}K_xFe_2As_2$ and $SmFeAsO_{1-x}F_x$ tapes are systemically investigated. These two tapes have large transport J_c over 10^4 Acm⁻² in self-field at 20 K and 4.2 K respectively, but the J_c of the $SmFeAsO_{1-x}F_x$ tape decreases rapidly with the increasing magnetic field. The MOI characterization indicates large bulk currents circulating through the whole sample for the both $Sr_{1-x}K_xFe_2As_2$ and $SmFeAsO_{1-x}F_x$ tapes, but also reveals the inhomogeneity inside the $SmFeAsO_{1-x}F_x$ sample. The results obtained from the MO measurements can be confirmed by the magnetic hysteresis measurements M(H) and the SEM examination. The weak high-field performance of the $SmFeAsO_{1-x}F_x$ tape may be ascribed to its short-time heat treatment.

Keywords - iron-based superconductors, magneto-optical imaging, critical currents, intergranular critical current density

Received October 01 / 21, 2013; Accepted October 21, 2013. Reference No. ST352 Category 5. This manuscript was published by *Superconductor Science & Technology* (SuST, IOP) 27, No. 4, 044019, (2014).