Strong Enhancement of In-field Critical Current Density at 20K in MgB₂ with Minute Additions of Dy₂O₃ and B₄C

P. Mikheenko^(1,2), S. K. Chen⁽¹⁾, J. L. MacManus-Driscoll⁽¹⁾

 Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, e-mail: jld35@cam.ac.uk
Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract - Minute additions of a combination of Dy_2O_3 and B_4C have been used to enhance both pinning and upper critical field in MgB₂ to the level suitable for MRI applications at 20 K. A delicate balance of Dy_2O_3 and B_4C addistions is required to improve pinning without significantly reducing connectivity between grains. The Dy_2O_3 nanoparticles react with B to form 10-15 nm DyB₄ nanoparticles, while B_4C supplies carbon into MgB₂ crystal lattice and increases the upper critical field. The optimum level of Dy_2O_3 and B_4C additions is ~0.5 wt. % of Dy_2O_3 and 0.04 wt. % of B_4C , yielding a J_c (20K) of 10^5 A.cm⁻² at 2.7 T.

Manuscript received September 5, 2007; accepted October 15, 2007. Reference No. ST6, Category 2 Published in <u>Appl. Phys. Lett. 91, 202508,2007</u>