Enhanced Vortex Pinning in Nanostructured YBCO/BZO Coated Conductors from Chemical Solution Deposition

Alberto Pomar, Valentina Roxana Vlad, Anna Llordés, Anna Palau, Joffre Gutiérrez, Susagna Ricart, Teresa Puig, Xavier Obradors, Alexander Usoskin

Abstract—We present our latest results on the growth of chemical solution deposited YBa₂Cu₃O₇-BaZrO₃ nanocomposites on metallic substrates. All chemical ^{TFA}YBCO-BZO/^{MOD}CZO/^{ABAD}YSZ/SS tapes with J_c (77K, sf) = 1.7 MA/cm² have been achieved with smoother field dependence of J_c than that of standard ^{TFA}YBCO tapes. Angular resolved measurements show isotropic enhancement vortex pinning due to the presence of randomly oriented BZO nanoparticles in the YBCO matrix. Chemical routes are thus a promising way to efficiently increase vortex pinning in coated conductor and improve their capabilities for high field applications.

Index Terms — Coated conductors, critical current density, nanocomposites, vortex pinning, nanostructured YBCO thin films.

Manuscript received 21 August 2008.

This work was supported by Spanish Government national funds (MAT2005-02047, NAN2004-09133-C03-01, Consolider NANOSELECT CSD2007-00041), Generalitat de Catalunya (Pla de Recerca SGR-0029, XeRMAE) and European Union (HIPERCHEM and NESPA projects).

A.P. V.R.V., A.Ll., A.P. J.G., S.R., T.P. and X.O. are with Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193 Spain (corresponding author e-mail: <u>apomar@icmab.es</u>). A.U. is with the European High Temperature Superconductors GmbH & Co. KG D-63755 Alzenau, Germany.