New 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB_{2} Cable - Development and Test Results

Vitaly S. Vysotsky ${ }^{1}$, Senior Member, IEEE, , Evegny V. Blagov ${ }^{2}$, Valery V. Kostyuk ${ }^{3}$, Alexander A. Nosov ${ }^{1}$, Sergey S. Fetisov ${ }^{1}$, Sergey Yu.Zanegin ${ }^{1}$, Ilya V. Antyukhov ${ }^{4}$, Valery P. Firsov ${ }^{4}$, Grigory G. Svalov ${ }^{1}$, Boris I. Katorgin ${ }^{4}$, and Vladimir S. Rachuk ${ }^{5}$
${ }^{1}$ Russian Scientific R\&D Cable Institute, 111024, Moscow, Russia
${ }^{2}$ Institute of Nanotechnology for Microelectronics, Russian Academy of Sciences, Moscow, 119991 Russia
${ }^{3}$ Russian Academy of Science, 119991, Moscow, Russia
${ }^{4}$ Moscow Aviation Institute - Technical University, 125993, Moscow, Russia
${ }^{5}$ JSC "Konstruktorskoe Buro Khimavtomatiky", Voronezh, 394006, Russia

Abstract

R\&D program for development of hybrid energy transfer lines the new 30 m MgB_{2} superconducting cable with high voltage insulation has been developed and tested. The superconducting cable was inserted into newly developed flexible 30 m hydrogen cryogenic line that has three sections with different types of thermal insulation in each section. High voltage current leads were developed also. The superconducting cable, cryostat and current leads have been tested in October 2013. Cable critical current was ~ 3500 A at ~ 21 K. Cable and current leads passed high voltage test with 50 kV DC at liquid hydrogen temperature. The tests were performed at temperatures from 20 to 26 K , hydrogen flow from 70 to $450 \mathrm{~g} / \mathrm{s}$ and pressure from 0.25 to 0.5 MPa . It was found that active evaporating cryostatting system as a thermal insulation practically eliminated heat transfer from room temperature to liquid hydrogen. The flexible 30 m hybrid energy transfer line developed is able to deliver \sim up to 60 MW of chemical power and $\sim 75 \mathrm{MW}$ of electrical power, i.e. $\sim 135 \mathrm{MW}$ in total. MgB_{2} cable design and test results of hybrid energy transfer lines are presented and discussed.

Keywords (Index Terms) - superconducting cables, MgB_{2}, liquid hydrogen, energy transmission

