

SQUID Basics

Dietmar Drung

Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany

Outline: - Introduction

- Low-Tc versus high-Tc technology
- SQUID fundamentals and performance
- Readout electronics
- Conclusion

SQUID status as of 2007

Introduction

The SQUID is an extremely sensitive detector of magnetic flux or of any physical quantity that can be converted into flux

- Magnetic field or field gradient
 Biomagnetism (MEG, MCG, magnetorelaxometry)
 Nuclear magnetic resonance (NMR, MRI)
 Non-destructive evaluation (NDE)
 Geophysical sounding
 SQUID microscopy
 Low-temperature noise thermometry (MFFT)
- Susceptibility
 Material sciences
- Electric current

Readout of cryogenic radiation detectors (X-ray, VIS, Infrared, THz) Cryogenic current comparator (CCC) for realization of electrical units Low-temperature noise thermometry (CSNT)

 Mechanical displacement Gravitational wave detection

SQUID Materials and Fabrication

Common low-T_c material: Niobium

- Transition temperature $T_c = 9.2 \text{ K} = -264^{\circ}\text{C}$
- Typical operation at 4.2 K (liquid helium)
- 1970s: SQUIDs = machined bulk Nb cylinders
- Today: Reliable Nb-AlO_x-Nb process on wafer scale
 → hundreds of SQUIDs in one run
- Virtually infinite lifetime, but caution: **SQUID = ESD sensitive device!** (ESD = electrostatic discharge)

Common high-T_c material: YBa₂Cu₃O_{7-x} (YBCO)

- High-T_c superconductivity discovered in 1986 by Bednorz & Müller
- Transition temperature $T_c \approx 92 \text{ K} = -181^{\circ}\text{C}$
- Typical operation at 77 K (liquid nitrogen)
- Very challenging material → unsatisfactory junction technology
 - \rightarrow multi-layer process very difficult
 - \rightarrow no wafer-scale fabrication

	Low-T _c	High-T _c
SQUID noise	Very low (++)	Low (+)
Chip fabrication costs	Low (+)	Very high ()
Reliability & reproducibility	Very high (++)	Low (-)
Design flexibility	Very high (++)	Low (-)
Cooling efforts	Very high ()	High (-)

\rightarrow Simplified cooling is main advantage of high-T_c SQUID

But: Customers do not like cooling at all (unless it is "invisible" \rightarrow cryocoolers \rightarrow magnetic interference!)

Cooling to cryogenic temperatures is main restriction for SQUID use, but is accepted if performance is really needed

Example: Helium-cooled magnets in MRI systems

- •rf voltage V_{rf} depends on flux Φ
 •Preamp noise very crucial
- •High pump frequency \rightarrow low noise
- •1970s: 30 MHz bulk Nb rf SQUIDs
- Today: ≈1 GHz high-T_c rf SQUIDs (Nb rf SQUIDs are "dying breed")

- •dc voltage V_{dc} depends on flux Φ
 •Noise usually lower than of rf SQUID
- •High-T_c: dc bias \rightarrow 2...100 kHz ac bias
- Josephson effect: 10 µV dc → 4.8 GHz ac → might energize microwave resonances in parasitic L/C structures & cause excess noise by mixing in the nonlinear device D.Drung, Kryo 2014

Example

50 μ T Earth field in 1 mm² SQUID loop: $2.4 \times 10^4 \Phi_0$ Noise level of state-of-the-art dc SQUID: $1 \times 10^{-6} \Phi_0 / \sqrt{Hz}$ \rightarrow rms noise in 1 Hz bandwidth: $10^{-6} \Phi_0 = 4 \times 10^{-11}$ of Earth field!

The SQUID has to be shielded very well from external fields! rf interference might completely suppress V-Φ characteristic! Use perfect "Faraday cage" around all sensitive structures!

Example: PTB Low-T_c Multiloop Magnetometer

≈1 cm² single-layer YBCO magnetometers: 20-30 fT/ \sqrt{Hz} @ 77 K ≈1 cm² multi-layer YBCO magnetometers: ≈10 fT/ \sqrt{Hz} @ 77 K Current record: 2.56 cm² multi-layer → 3.5 fT/ \sqrt{Hz} @ 77 K M. I. Faley et al., J. Physics: Conf. Series 43, 1199-1202 (2006)

Some Signal Amplitudes		PIB
Peripheral nerve signal (spine)	0.01 pT	
Low-T _c system noise (p-p in 200 Hz bandwidth)	0.2 pT	
Human brain	1 pT	
High-T _c system noise (p-p in 200 Hz bandwidth)	4 pT	
Human heart	50 pT	
Power line interference ("quiet" room)	10⁵ pT	
Earth's field (static)	5×10 ⁷ pT	

Environmental noise must be suppressed by factor >10⁴

Shielded room: Expensive and massive (but simplifies system design)Gradiometer:Low-T_c SQUID \rightarrow Wire-wound gradiometer coilsHigh-T_c SQUID \rightarrow Electronic / software gradiometer

Small-signal SQUID readout

Small change in applied flux $\delta \Phi_a$ results in small change in SQUID voltage δV

Main problems:

- Very small voltage across the SQUID: $V_{pp} \approx 10...50 \,\mu V$
- Transfer coefficient $V_{\Phi} = dV/d\Phi$ depends on SQUID working point
- Very small linear flux range: $\Phi_{lin} \ll \Phi_0$

Example: Magnetometer with 1 nT/ $\Phi_0 \rightarrow$ Human heart signal $\approx 0.05 \Phi_0$ Power line interference $\approx 300 \Phi_0$

Main tasks of a SQUID electronics:

- Amplifies the weak SQUID voltage without adding noise
- Linearizes transfer function to provide sufficient dynamic range

Basic Flux-locked Loop (FLL)

Feedback flux counterbalances applied flux

- \rightarrow Output voltage V_f depends linearly on applied flux
- \rightarrow Large dynamic range possible (limit: A/D converter in data acquisition unit)
- \rightarrow Transfer function does no longer depend SQUID working point

Problems with direct readout:

- Low SQUID impedance \rightarrow Bipolar preamp \rightarrow high noise temperature
- 1/f noise of preamplifier contributes to system noise
- \rightarrow Reason for the introduction of flux modulation
 - R. L. Forgacs and A. Warnick, *Rev. Sci. Instrum.* **38**, 214-220 (1967)
 - J. Clarke, W. M. Goubau, and M. B. Ketchen, J. Low Temp. Phys. 25, 99-144 (1976)

- Modulation frequency f_{mod} typically 100...500 kHz \rightarrow Optimum JFET performance
- Wideband systems with f_{mod} up to **33 MHz** were demonstrated A. Matlashov et al., *IEEE Trans. Appl. Supercond.* **11**, 876-879 (2001)

Flux Modulation vs. Direct Readout

Flux Modulation Readout:

- (+) FET with low noise temperature can be used
- (+) Preamplifier low-frequency noise is suppressed
- (+) In-phase JJ critical current fluctuations are suppressed
- (-) Modulation frequency limits bandwidth
- (-) Needs smooth, well-behaved V- Φ characteristics
- → Standard scheme useful for most applications

Direct Readout:

- (+) High system bandwidth can easily be obtained
- (+) Resonance-distorted V- Φ characteristics manageable
- (+) Electronics more compact than with flux modulation
- (-) Preamplifier with low 1/f noise required
- (-) More difficult to keep preamplifier noise low enough

 \rightarrow Particularly attractive for wideband systems

- Preamp voltage noise reduced by increasing V_⊕ with a cooled L-R circuit
 → APF circuit acts as small-signal preamplifier
 - \rightarrow Noise temperature $\approx 2 \times$ operation temperature
- Reduced linear range $\Phi_{lin} \rightarrow$ Do not make APF gain unnecessarily high
- Current noise might be suppressed by bias current feedback (BCF)
- Simple feedback electronics → Well suited for multichannel systems

Simplified Model for FLL Dynamics

- **SQUID:** Infinitely fast but nonlinear flux-to-voltage converter Basic parameter: linear flux range $\Phi_{lin} = V_{pp} / V_{\Phi}$
- **Integrator:** Ideal one-pole integrator with gain proportional to 1/f (f_1 = unity-gain frequency of open feedback loop)
- **Delay:** Represents delay on transmission lines plus phase shifts caused by electronic components and SQUID
 - Flux modulation:Matching transformer & demodulator (mixer) $^{(8)}$ t_d \approx 100 ns $^{(2)}$ f_{mod} = 16 MHzR. H. Koch et al., *Rev. Sci. Instrum.* 67, 2968-2976 (1996)
 - Direct readout:Preamp bandwidth & wires to the SQUID $^{(8)}$ t_d \approx 15 ns @ f_{3dB} = 20 MHzD. Drung et al., Supercond. Sci. Technol. 19, S235-S241 (2006)

4.2 K systems: ≈ 1 m distance between SQUID and FLL electronics $\rightarrow t_d \approx 10$ ns $\rightarrow \approx 20$ MHz is the maximum system bandwidth with room temperature FLL \rightarrow reduce distance between SQUID and FLL \rightarrow max. bandwidth with "cold" FLL

Example: PTB "Cold" FLL Demonstrator

- Complete FLL operated at 4.2 K
- Design with discrete SiGe transistors
- SQUID + FLL on 30 × 20 mm² board
- Power dissipation ≈ 10 mW @ 4.2 K
 → keep low to minimize helium boil-off
- Extremely short loop delay ~ 0.6 ns
- Very high FLL bandwidth ≈ 350 MHz
- Flux noise **0.35 μ**Φ₀/√**Hz** (C3X16A)
- Fast step response and low distortion

Conclusion

- Modern low-T_c SQUIDs are extremely sensitive, versatile & robust
- Main restriction: operation at cryogenic temperatures
- For specific applications, complete systems are available
 → biomagnetism, material sciences, etc.
- General purpose laboratory systems are also available
 → user can design pickup coil for his specific application
- User-friendliness greatly improved in the past decades
 → systems fully computer controlled

