IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), June 2023

Latest Development of High-field Magnets for Compact Fusion Reactors and Particle Accelerators from CORC[®] Cables and Wires

D.C. van der Laan^{ab}, J.D. Weiss^{ab}, K. Radcliff^a, Z. Johnson^b, D.S. Davis^c, U. P. Trociewitz^c, Y. Kim^c, D. C. Larbalestier^c, X. Wang^d, H. Higley^d, Y. Zhai^e, M. Kiumar^g, P. Yoshi^g and R. Gupta^g

^a Advanced Conductor Technologies LLC, Boulder, Colorado USA
^b The Department of Physics, University of Colorado, Boulder, Colorado USA
^c National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida USA
^d Lawrence Berkeley National Laboratory, Berkeley, California USA
^e Princeton Plasma Physics Laboratory, Princeton, New Jersey USA
^g Brookhaven National Laboratory, Upton, New York USA

Email: <u>danko@advancedconductor.com</u>

Abstract – Advanced Conductor Technologies is developing CORC[®] cables and wires wound from REBCO coated conductors for use in compact fusion magnets and high-field particle accelerators. An overview of the latest CORC[®] conductor development and their implementation into prototype high-field magnets is presented.

A concept aimed at narrow Ohmic Heating coils in compact fusion reactors is described in which CORC[®] cables are wound into grooved mandrels. The concept doesn't require epoxy impregnation, thereby significantly easing magnet manufacturing. The CORC[®] cable is wound directly into grooved mandrels, where support against hoop stress is provided by the neighboring mandrel. Initial degradation-free tests at current ramp rates as high as 5 kA/s up to 10 kA and under mechanical cycling within a 12 T background magnetic field are discussed.

An overview of high current density CORC[®] wires with improved bending performance that allows bending to radii below 20–25 mm is provided. The CORC[®] wires are developed specifically for high-field accelerator magnets that ultimately would generate a dipole magnetic field of 20 T. An overview of the development of a 5 T canted-cosine-theta (CCT) magnet from the latest generation of CORC[®] wires at Berkeley National Laboratory will be provided.

The development of a Common Coil insert magnets, wound from a high-current CORC[®] cable using a novel winding approach, will be outlined. Insert coils are developed for operation within the 10 T LTS Common Coil outsert at Brookhaven National Laboratory. The performance under quench at currents exceeding 12 kA at 6 T background field of the first, smaller Common Coil CORC[®] insert magnet is presented. An overview of a more powerful CORC[®] insert magnet, aimed to generate a dipole field of 3 T within the 10 T

Common Coil outsert that will be tested near the summer of 2023, is also provided.

Keywords (Index Terms) – CORC cable, high-temperature superconducting magnet, canted-cosine-theta magnet, compact fusion reactor, Ohmic heating coil

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), June 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.