Thin Film Nanocomposites Based on YBCO with Defects Comprised of Self-assembled Inclusions

O. V. Boytsova¹, A. R. Kaul¹, S. V. Samoilenkov², I. E. Voloshin³

¹Department of Material Science, Chemistry Department, Moscow State University, 119992, Moscow, Russia ²Institute of High Temperature RAS, Izhorskaja 13/19, 125412, Moscow, Russia ³All-Russian Electrical Engineering Inst – Moscow, Russuia

E-mail: boytsova@gmial.com

Abstract - The critical current of YBCO superconducting coatings in external magnetic field can be enhanced by incorporating high density of extended nanometer-sized defects to act as pinning centers for magnetic vortices. One particular variant involves the deposition superconducting film with columnar defects comprised of self-assembled BaZrO₃, BaSnO₃ or BaHfO₃ nanoinclusions. Here we report the results of our study of YBCO films with different inclusions prepared by MOCVD. For the first time, we succeeded in growth of YBCO films with oriented nanoinclusions of BaCeO₃ phase and demonstrate that it does not reduce T_c of YBCO, in contrast to BaZrO₃ or BaSnO₃. The best composite thin films revealed the T_c value of about 88K and critical current density at 77K above 1MA/cm² in self-field and around 0.3 MA/cm² in 1 T (B//c).

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010 Published in *Journal of Physics Conf. Series (SuST)* 234, 012008 (2010)