Upper Critical Fields up to 60 T and the Vortex Matter Phase Diagram of Arsenic-deficient LaO_{0.9}F_{0.1}FeAs_{1-δ}

G. Fuchs¹, S.-L. Drechsler¹, N. Kozlova¹, V. Grinenko¹, J. Freudenberger¹,
M. Bartkowiak², G. Behr¹, C. Hess¹, R. Klingeler¹, A. Köhler¹,
K. Nenkov¹, H.-H. Klauss³, B. Büchner¹ and L. Schultz¹

¹IFW Dresden, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, P.O. Box 270116, D-01171 Dresden, Germany ²Hochfeld-Magnetlabor Dresden, FZ Dresden-Rossendorf (FZD), Germany ³Institut für Festkörperphysik, TU Dresden, Germany

E-mail: fuchs@ifw-dresden.de

Abstract - We report resistivity, magnetization and upper critical field $B_{c2}(T)$ data for arsenic deficient LaO_{0.9}F_{0.1}FeAs_{1-δ} in a wide temperature and high field range up to 60 T. These disordered samples exhibit a slightly enhanced transition temperature of $T_c = 29.0$ K and a significantly enlarged slope $dB_{c2}/dT = -5.4$ T/K near T_c . The high-field $B_{c2}(T)$ data obtained from resistance measurements in pulsed magnetic fields follow up to about 30 T the WHH (Werthamer-Helfand-Hohenberg) curve for the orbital limited upper critical field, but show a clear flattening above 30 T. This flattening evidences Pauli limiting behavior (PLB) with $B_{c2}(0)\approx 63$ T. We compare our results with $B_{c2}(T)$ data reported in the literature for clean and disordered samples. Whereas clean samples show no PLB for fields below 70 T as measured so far, the hitherto unexplained flattening of $B_{c2}(T)$ for applied fields H||ab observed for several disordered closely related systems is interpreted as a manifestation of PLB. The influence of the arsenic vacancies in LaO_{0.9}F_{0.1}FeAs_{1-δ} on the vortex matter phase diagram is studied by magnetization measurements on bulk samples.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010 Published in *Journal of Physics Conf. Series (SuST)* 234, 012013 (2010)