First Commercial Medium Voltage Superconducting Fault-Current Limiters – Production, Test and Installation

R. Dommerque¹, S. Krämer¹, A. Hobl¹, R. Böhm¹, M. Bludau¹,
J. Bock¹, D. Klaus², H. Piereder², A. Wilson², T. Krüger³,
G. Pfeiffer⁴, K. Pfeiffer⁴, S. Elschner⁵

¹Nexans SuperConductors GmbH, Hürth, Germany
 ²Applied Superconductor Ltd, Blyth, UK
 ³Vattenfall Europe Generation AG, Cottbus, Germany
 ⁴Brandenburgische Technische Universität, Cottbus, Germany
 ⁵University of Applied Science, Mannheim, Germany

Email: Achim.Hobl@nexans.com

Abstract - In 2008/09 Nexans SuperConductors GmbH made the step from R&D activities to the production of the first non-publicly funded fault-current limiter units. In close cooperation with two customers, Applied Superconductor Limited (ASL, UK) and Vattenfall (Germany), Nexans was able to design, produce and deliver two resistive superconducting limiter devices. Both devices are designed for the medium voltage grid and were tested at the high-voltage and high-power lab IPH in Berlin. The superconducting components of both limiters, coils of bulk MCP BSCCO-2212, have been designed and produced by Nexans.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010 Published in *Supercond. Sci. Technol. (SuST)* 23, 034020 (2010)