Effect of Nanosize BaZrO₃ Inclusions on Vortex Parameters in YBa₂Cu₃O_{7-x}

E. Silva¹, N. Pompeo², R. Rogai², A. Augieri³, V. Galluzzi³, G. Celentano³

 ¹Dipartimento di Fisica "E. Amaldi" and Unità CNISM, Università Roma Tre, and INFM-CNR "SUPERMAT", Via della Vasca Navale 84, 00146 Roma, Italy
²Dipartimento di Fisica "E. Amaldi" and Unità CNISM, Università Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
³ENEA-Frascati, Via Enrico Fermi 45, 00044 Frascati, Roma, Italy

E-mail: silva@fis.uniroma3.it

Abstract - We report on the field dependence of the microwave complex resistivity data in YBa₂Cu₃O_{7-x}/BaZrO₃ films grown by PLD at various BaZrO₃ content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO₃ content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO₃ sites at low fields, and suggest instead that vortices occupy both BaZrO₃ sites and interstitials in the YBa₂Cu₃O_{7-x} matrix, even at low fields.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010 Published in *Journal of Physics Conf. Series (SuST)* 234, 012040 (2010)