Critical Current Density in Ag/YBa₂Cu₃O_x and PrBa₂Cu₃O_y/YBa₂Cu₃O_x Multilayers

V. S. Dang¹, P. Mikheenko¹, A. Sarkar¹, J. S. Abell¹ and A. Crisan^{1,2}

¹School of Metallurgy and Materials, University of Birmingham, Birmingham B15- 2TT, United Kingdom. ²National Institute of Materials Physics, Bucharest 077125, Romania

*Corresponding Author e-mail: v.dang@bham.ac.uk

Abstract - One of successful methods of introducing artificial pinning centres in superconducting films is by alternating layers of superconducting material and incomplete layers (planar distributions of nanodots) of other materials (quasi-superlattice or quasi-multilayer approach). Most of the work on artificial pinning centres has been done on thin YBa₂Cu₃O_x (YBCO) films and a large variety of quasi-multilayer materials have been explored. It is still difficult to justify the choice of a quasi-multilayer material for particular superconducting applications. One of the properties to be taken into account is compatibility of the crystal lattice of YBCO and the quasi-superlattice material. Here we compare the superconducting behaviour of two very different quasi-multilayers: one with very similar crystal lattices of nanodots and YBCO: PrBa₂Cu₃O_y (PBCO)/YBCO, and another one with very different, Ag/YBCO. We found that the difference between crystal lattices strongly affects superconducting properties of quasi-multilayers and leads to different types of pinning in the films.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010 Published in *Journal of Physics Conf. Series (SuST)* 234, 012010 (2010)