Multilayer BZO/YBCO Thick Films for High Ic in High Fields

<u>Judy Wu</u>¹, Victor Ogunjimi¹, Mary Ann Sebastian², Di Zhang³, Bibek Gautam¹, Mohan Panth¹, Jie Jian³, Jijie Huang³, Yifan Zhang³, Timothy Haugan², HaiyanWang³

¹Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas, USA ²U.S. Air Force Research Laboratory, Propulsion Directorate, WPAFB, Ohio, USA ³School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA

Email: jwu@ku.edu

Abstract—A multilayer (ML) scheme was recently developed to facilitate diffusion of Ca from two thin (Ca0.3Y0.7)BCO layers sandwiched with three BZO/YBCO layers and the consequent dynamic Ca/Cu substitution on tensile strained YBCO lattice during the growth of c-axis aligned BaZrO₃ dimensional artificial pinning centers (BZO 1D-APCs) in BZO/YBCO nanocomposite films. The substitution of smaller Cu ions by larger Ca ones is found energetically preferable by inducing c-axis elongation of the YBCO lattice near the BZO 1D-APC/YBCO interface to enable a coherent interface via reducing the BZO/YBCO lattice mismatch from originally 7.7% to 1.4%, leading to significantly enhanced pinning efficiency of BZO 1D-APCs, especially at high magnetic fields. In this work, the ML scheme is applied to thick BZO/YBCO films with total thickness in the range from 150 nm to 750 nm. Remarkably, comparable J_c (B) was observed in these ML samples while at lower temperature and higher fields, the thicker BZO/YBCO ML films outperform their thinner counterparts in both higher value and less anisotropy of $J_c(B)$. At 750 nm thickness, $J_c(65K)$, 9T) is >1.2 MA/cm² and J_c (30K, 9T) reaches up to 12 MA/cm² with a variation of ~25% over the entire angular range of B field orientations. This result illustrates the critical role of the BZO 1D-APC/YBCO interface in the pinning efficiency of BZO 1D-APCs.

Keywords (Index Terms)—Multilayer, YBCO nanocomposite film, artificial pinning center, vortex pinning efficiency, interface engineering

Acknowledgments

This research was supported in part by NSF contracts Nos: NSF-DMR-1909292 and NSF-DMR-1508494, the AFRL Aerospace Systems Directorate, the Air Force Office of Scientific Research (AFOSR), and the U.S. National Science Foundation (DMR-1565822 and DMR-2016453) for TEM characterization.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.