

A HISTORICAL EPISODE ON DEVELOPMENT OF MGB₂ MATERIALS AND CURRENT STATUS OF ITS APPLICATION GIOVANNI GRASSO, ASG SUPERCONDUCTORS

20 years anniversary of MgB₂ superconductor

My second decade memorial speech on MGB_2 ..

MgB₂ ten years after: present state and perspectives for superconducting wires

Giovanni Grasso

Trondheim, Norway, June 13th, 2011

TEN YEARS AGO I GAVE THIS SPEECH ..

HOW FAR ARE WE TODAY FROM OUR HOPES?

LEADER IN PROVIDING THE CUTTING-EDGE TECHNOLOGY OF MGB₂ SUPERCONDUCTING WIRES FOR APPLICATION IN ENERGY, MEDICAL, INDUSTRIAL

ASG TODAY: A DYNAMIC COMPANY

MARKET LEADER IN LARGE SUPERCONDUCTING SYSTEM DESIGN, MANUFACTURING AND SUPPLY FOR A VARIETY OF APPLICATIONS AND CUSTOMERS GLOBALLY

INVENTORS OF THE MR-OPEN: THE ONLY MRI PRODUCT WITH A "TOTALLY OPEN-SKY" MAGNET SOLUTION, THAT DEFEATS CLAUSTROPHOBIA AND ALLOWS MULTI-POSITION IMAGING

Almost FOUR DECADES OF SUPERCONDUCTIVITY INDUSTRY now merged in a single company

ASG is now producing SUPERCONDUCTING WIRES, COMPONENTS AND FULL SYSTEMS

ASG: LOCATED IN THE NORTH-WEST OF ITALY

TECHNOLOGIES

INNOVATIVE

ASG BUSINESS STRATEGY: MGB₂ MAIN FOCUS NOW

From MGB₂ WIRES to POWERING CABLES

REFRIGERATION-COOLED POWER **DEVICES** for the electricity grid

ROTATING MRI applied to cancer therapy

Application targets for our $MGB_2 R\&D$

MAGNETIC FIELD

EX SITU MGB₂ PROCESS:

- REACTED MGB₂ POWDERS
- Powders handled in CONTROLLED ATMOSPHERE
- BILLET SIZE ABOUT 48 MM
- ELONGATION 1:20000
- SINGLE PIECE LENGTH UP TO 13 KM
- FINAL IN-LINE SINTERING
- SUPPLIED IN REACTED STATE

OUR EX-SITU PROCESSING

MGB_2 wires: off-the-shelf HTS technology

EX-SITU MgB₂ WIRE PRODUCTION BASED ON INDUSTRIAL RAW MATERIALS

MAGNESIUM POWDERS

- Production of lightweight
- Alloys
- Pharma products
- Pyrotechnics, rockets

BORON POWDERS

- Airbags production
- Solid combustion
- Neutron capture

NICKEL-ALLOY PIPES

- Chemical plants
- Acid resistant tubing
- Alkaline resistant tubing

PRODUCT AND PROCESS KNOW-HOW & IP: Our ex-situ wires allow for React & Wind/Cable unlike other methods

PRODUCTION PLANT INSTALLED ENTIRELY IN GENOA, ITALY All materials and manufacturing equipment available from Italy and nearby countries (easier procurement, maintenance, upgrade)

EX-SITU PRO-CONS

PRO

- HIGHER FILAMENT PACKING DENSITY (80-90%)
- REACT & WIND AND REACT & CABLING STRAIGHTFORWARD
- CHOICE OF DESIRED ELECTRICAL
 INSULATION
- LONG LENGTHS AND UNIFORMITY
- LOWER COST MAGNET MANUFACTURING

CONS

- WORSE IN-FIELD PERFORMANCE THAN IN-*SITU*
- MORE COMPLEX WIRE MANUFACTURING PROCESS THAN IN-SITU WHERE MOST OF THE COLD WORKING IS DONE BY WIRE DRAWING

CABLES

MGB_2 round wires for high-current cables

Main characteristics

	Wire 1	Wire 2 - CERN	Wire 3	Wire 4
MgB ₂ wire				
Diameter (mm)	1.3	1.0	1.5	1.5
Materials	Monel, Ni	Monel, Ni, Nb	Monel, Ni	Monel, Ni, Nb
MgB_2 volume fraction	17%	12%	30%	14%
<i>I_C (A)</i> @ 20 K and 1 T	500	350	> 650	> 650
$I_{C}(A)$ @ 4.2 K and 3 T	450	250	> 700	600
Minimum R _{bending} (mm)	125	100	200	150

Record 13 km billet length Production exceeded 1'000 km

- STRAIGHT (VIRGIN) AND BENT WIRES HAVE BEEN THOROUGHLY STUDIED.
- TRANSPORT CURRENT MEASUREMENTS AT 4.2 K AND IN PARALLEL MAGNETIC FIELD IN THE RANGE 1.5 4.5 T.
- THE ELECTRICAL PERFORMANCE OF EACH WIRE LAYOUT HAS BEEN VALIDATED.
- THE MINIMUM BENDING RADIUS OF EACH WIRE LAYOUT WAS DEFINED.

Electrical performance of MGB_2 round wires

CRITICAL CURRENT

Transport current measurements

- ENGINEERING CRITICAL CURRENT DENSITY
- SUPERCONDUCTOR CRITICAL CURRENT DENSITY

BEST WIRES FOR REACT & CABLING

Two wires selected for cabling

Wire 1				
Diameter (mm)	1.3			
Filaments	36			
MgB ₂	17%			
Monel	53%			
Nickel	30%			

Wire 2

1

37 12%

46%

15%

13%

14%

STATISTICAL DISTRIBUTION OF THE WIRE DIAMETER

WITH VALUES BETWEEN THE SPECIFICATION LIMITS

Wire unit length about 3 km

CERN has FULLY QUALIFIED MgB₂ CABLES and all components meet the acceptance criteria SERIES PRODUCTION ongoing

Full wire delivery meanwhile completed with 6 month in advance!

1000

600 th. 400

200

806 km

CABLE CONDUCTOR: DESIGN AND PERFORMANCE

Fault tolerant cable configuration: MgB₂ cable conductor designs

Nominal operating requirements

DC operation				
Current rating	10 kA			
Voltage rating of the cable system	320 kV			
Power rating of the cable system	3.2 GW			
Operating temperature	20 K			
Fault current	35 kA during 100 ms			

18 MgB_2 wires	24 MgB ₂ wires
I_{C} = 14200 A @ 20 K & S.F. 0.7 T	I_{C} = 12960 A @ 20 K & S.F. 0.7 T
$I_{op}/I_{C} = 0.70$	$I_{op}/I_{C} = 0.77$
Insulated cable diameter = 9.9 mm	Insulated cable diameter = 9.9 mm

15

CABLE CONDUCTOR: DESIGN AND PERFORMANCE

20000

Critical current - estimated boundaries vs measurements

Critical current measurements at 4.2 K

- I_c measurements of 2 m long MgB₂ cable in FRESCA test station.
- Tests carried out at 4.2 K and in perpendicular field up to 5 T.

A PROJECT TO OVERCOME THE CHALLENGES OF INTEGRATING RENEWABLES

BEST PATHS PROJECT: THE LARGEST PROJECT EVER SUPPORTED BY THE EUROPEAN COMMISSION RDD FRAMEWORK PROGRAMS WITHIN THE FIELD OF POWER GRIDS

MAGNETS

MRO-MRO+ ARCHITECTURE

FEATURE	VALUE
FILAMENTS NUMBER	12
OVERALL BARE CONDUCTOR DIMENSIONS [MM]	3.67 Х 0.65 мм
OVERALL AREA [MM ²]	2.2 MM ²
MGB ₂ AREA [MM ² AND %]	0.26 мм ² - 12%
NI AREA [MM ² AND %]	1.39 мм ² - 63%
IRON AREA [MM ² AND %]	0.22 мм ² – 10%
COPPER AREA [MM ² AND %]	0.33 мм² – 15%
TWIST PITCH [MM]	750 мм
OVERALL DIMENSIONS WITH POLYESTER INSULATION	3.79 Х 0.77 мм
MINIMUM BENDING DIAMETER EASY WAY	150 мм
MINIMUM BENDING DIAMETER HARD WAY	1200 мм
TYPICAL PIECE LENGTH	4 км

MRO / MRO+ DIFFER BY MGB₂ DOPING MRI IS ROUND WITH FILLING FACTOR OF 26%

MGB_2 Wires for magnet application

 $\begin{array}{l} MGB_2\mbox{-}{\sf BASED} \ MRI \ \mbox{used to guide} \\ \mbox{particle and radiation cancer} \\ \mbox{therapy beams} \end{array}$

EXTREME 1 T MRI MAGNET SOLUTIONS

HEAD SCANNER FAST RAMPING INTRA-OPERATIVE 1T/700 MRI

- COMPACT AND LIGHTWEIGHT SCANNER FOR NEUROSURGEONS
- MOVABLE AND CRYOGENIC-FREE FOR
 INSTALLATION AND USE IN SURGERY ROOMS
- FULLY CRYOGEN-FREE SUPERCONDUCTING MGB₂ SOLUTION
- ULTRA-FAST RAMPING TO BE UP TO FIELD IN MINUTES

TOTAL BODY LIGHTWEIGHT & PORTABLE 1T/800 MRI

- ULTRA LIGHT-WEIGHT SCANNER
- FULLY CRYOGEN-FREE SUPERCONDUCTING MGB₂ SOLUTION
- ROBUST AND STABLE DESIGN
- LOW FIELD HOMOGENEITY COMPENSATED WITH ADVANCED IMAGING AND PROCESSING TECHNIQUES

ASG 36kV SFCL CONSTRUCTION

ASG 36KV SFCL SPECIFICATION

Parameter	REQUIREMENT
Rated voltage	36kV
Line frequency	50Hz
Line voltage at fault level below	33kV
Maximum allowable steady state voltage drop at rated continuous normal current (800A)	600V rms
Lightning impulse voltage withstand level	170kV; 1.2/50µs
Power frequency voltage withstand level	70 kV for 1 minute
Continuous normal current	800Arms
Maximum normal current (magnitude and duration)	1400Arms / 15minutes
Prospective unlimited peak fault current	21.0kApeak
Peak limited current	13.8kA _{peak}
Prospective unlimited symmetrical fault current	8.0kArms
Symmetrical limited current	5.0kArms
Fault duration	Up to 3 seconds
Load power factor	0.98

SHORT CIRCUIT TESTS

DESIGN FLEXIBILITY

By modifying the size of the AC and DC components of the SFCL, we can offer a wide range of current and voltage ratings:

Commercial MGB_2 induction heater

SUPER COIL

Aluminum billet (Length: 700mm, Diameter: 240mm) Loading/unloading machine of Aluminum billet Supporting system for Heavy weight parts

AND MUCH MORE...

A 10 MW CONCEPT: SUPRAPOWER

- Synchronous salient pole, direct drive
- 10 MW, 8.1 rpm, 11.8 MNm
- MgB₂ superconducting field coils
- Cryogen free cooling system (reduce maintenance requirements)
- Modular Cryostats
- 48 warm iron poles
- · Air-gap armature winding
- 1.5 T of induction peak value
- Airgap shear stress of 112 kPa
- 10.1 m air-gap diameter,
- 0.74 m stack length

NbTi and ${\rm MgB}_2$ identical coils, comparison of thermal behavior during fast field variation

The MgB_2 coil has been successfully ramped up to full field of about 2 Tesla in less than 50 seconds; the NbTi coil has quenched at a fraction of the current

CONCLUSIONS AND AKNOWLEDGEMENTS

- The progress in application of MgB₂ wires we made in the past decade has been very solid
- Medical, industrial and grid devices have successfully passed prototyping phase
- We believe that the next decade will see the MgB₂ wires in many more commercial applications
- MgB₂ will contribute to the carbon neutral economy!
- Thank you Prof. Akimitsu and team!

Special thanks to:

- F. Mazzei, A. Tumino, D. Pietranera, D. Magrassi
- M. Belardinelli, A. Carrozzi
- A. Capelluto, L. Mauro, D. Klaus, A. Pellecchia