> 2021 Virtual Coated Conductors for Applications (Virtual CCA 2021) October 11-15, 2021, ONLINE

Robust REBCO Coil Structure for High Field Cryogen-free Superconducting Magnet

<u>S. Awaji¹, A. Badel^{1, 4}, K. Takahashi¹, T. Abe¹, T. Okada¹, S. Fujita², S. Muto², M. Daibo², Y. Iijima², T. Uto³, S. Hanai³, S.Hanai³ and S. Ioka³ High Field Laboratory for Superconducting Materials (HFLSM), Institute for Materials Research, Tohoku University¹ Fujikura Ltd.² Toshiba Energy System & Solutions Corporation³</u>

Grenoble Electrical Engineering (G2ELAB)⁴

A part of project is supported by KAKENHI (18H05248) in ministry of education, Japan.

High Field Magnet Development at HFLSM - Load map -

• 24.6 T in a 52 mm RT bore with 1 hour ramping

- Advanced high strength Nb₃Sn technologies and high strength Bi2223 (Type HT-Nx (\$EI))
- World highest field in CSM
- Open for users since 2016 (250 days operation in 2018)
- 25.1 T achieved in 2020
- Long time, high precision experiments
- J_c -B-T- θ of HTS, transport, NMR, high

pressure, etc.

2018-2022 Upgrade to 30T-CSM (JSPS project)

• Replace from Bi2223 insert to REBCO one.

• R&D toward to 33T

S. Awaji IEEE TAS 31 (2021) 4300105 High strength Nb₃Sn
REBCO conductors
Adv. HTS coil technol.

2022-

NEW 33T-CSM

2

Superconducting magnet technology beyond 40 T

50T Superconducting magnet

Under "High Magnetic Field Collaboratory Japan" project

Summary and issues of commercial REBCO CC tapes

3

- Excellent in-field Jc and electromechanical properties.
 - ✓ Stress tolerance decreases with decreasing volume fraction of Hastelloy
- \checkmark APC is effective to improve in-field Jc properties.
 - ✓ Angular dependence of Jc is not complicated below 20 K even for REBCO with APC.

Issues

Delamination and the local degradation

Current share is a key to overcome the hotspot.

- Screening current induced field and stress
- Piece length: typically 100m, 2-300m (high cost), Is 1km possible?,
- ✓ Cost: \approx \$50/m (4mm-width), Need less than \$10/m?
- **Protection** from the hot-spot is critical. \checkmark
 - ✓ No-insulation (self-protection)-> delay of magnetic field and heating are issues.
 - ✓ Quench heater (Active protection) -> need huge power in quench heater with short time.
 - ✓ Dump resistor (Passive protection) -> need detection and quick dump before burn-out

MT26 Special session "Magnet Technology and Conductor for future High-Field Applications"

Issues of REBCO coated conductors for high field magnets

✓ Delamination and local degradation

It may be impossible to avoid the local degradation statistically, although its possibility can be reduced so much.

Issues of REBCO coated conductors for high field magnets

Xia et al, SuST, 32 (2019) 095005

HFLSM

Impregnation -> Improve coil stiffness

5

Concept of Robust REBCO coil

- Robust against local degradation: Two bundle winding
- Robust against mechanical stress: Edge impregnation

Robust against local degradation: Two bundle winding

EuBCO tape with BHO	
Width	4 mm
full thickness	0.11 mm
REBCO thickness	2.5 µm
Hastelloy® thickness	50 µm
Cu thickness	20 µm
I _c (4mm, 77 K, s.f.)	213.5 A

Double pancake coil	
tape	EuBCO+BHO
Turn number	101 turn × 2 layer
Inner diameter	40.0 mm
Outer diameter	94.0 mm
Position of damage*	55 turn of bottom coil, outer tape
Coil constant	3.87 × 10 ⁻³ T/A

*Damage was introduced by double bending with ϕ 12 mm bending dia.

\$40 x \$94, 101 x 2 turns/pc

Damaged part I in 55th/101 turn of bottom PC 8

IV property of damaged EuBCO

Robust against local degradation: Two bundle insulated double pancake coil with a damaged area

- Monotape coil with a damage shows low performance.
- Bundle tale coil with damage shows similar performance to that without a damage at 77K and slightly lower with decreasing temperature.
- Ic difference may be related to Ic distribution in the coil.
 - Bundle winding is effective!

Abe et al, MT27 (TUE-PO1-722-06)

Bundle winding $\phi 40 \times \phi 94$ (101 turns $\times 2$)

Robust against mechanical stress: Edge impregnation

10

Turns are not glued only to the flanges (in red), not to each other

Radial stiffness is defined by ratio between flange thickness and tape width : can be made very low

 \Rightarrow Radial tensile stress only in the flange : no delamination risk

 \Rightarrow Hoop stress profile can be adjusted to be more homogenous

Edge impregnation can be obtained :

- Impregnation + non-stick material for isolation between turns (fluorine-coated polyimide)
- Only gluing the flanges on the pancake after winding

A. Badel presented at CEC/ICMC 2021

2D axisymmetrical Magnetostatic / Mechanics coupled using Comsol[®]

Ex of double pancake study with symmetry

- Mechanics: Solid deformation, no friction/dry contact \rightarrow not valid with radial compression
- Whole conductor is averaged :

Young Modulus : 150 GPa for 2 x 150 µm REBCO

- Polyimide + Fluorine Insulation represented by elastic interface (in green)
 Very low Young Modulus (1 MPa) represent non-stick behavior
- Epoxy between conductor FRP flanges : elastic interface (in blue)
 Young Modulus : 10 GPa
- Every turns represented independently or groups of several: save computing time, similar results)

13

Mechanical study : 2 tape co-wound pancake by Toshiba

Basic studies : "Wilson" hypothesis (all turns glued strongly together) or "BJR" (all turns acting independently)

Question: How's screening current induced stress?

Effect of inhomogeneous J on stress distribution - Reference

500

Modelled case : stack of 4 full-scale pancakes from 30 T project insert

- Conductor : 4mm wide, 2 x 150 um Fujikura tape
- Rin : 34 mm •
- Rout : 132 mm
- Turn nb : 300
- FRP Flange thickness : 0.34 mm
- @ 500 A, under 11 T background

Effect of inhomogeneous J on stress distribution - model

 Input: Current density distribution @ 500A including transport, shielding and coupling currents

Obtained from detailed transient ElectroMag model (static background of 11 T added)

- In static magneto-mechanical model, top pancake modelled tape by tape: detailed local J and resulting Lorentz force Fv = J x B applied
- Other three pancakes simplified and considered with homogeneous J (as before) to include their field contribution, background field also added

•

Effect of inhomogeneous J on stress distribution - model

 Input: Current density distribution @ 500A including transport, shielding and coupling currents

Obtained from detailed transient ElectroMag model (static background of 11 T added)

In mechanical model, top pancake modelled tape by tape: detailed local Lorentz force Fv = J × B applied

A. Badel presented at CEC/ICMC 2021

With J and B, we have the applied Lorentz force Fv, but not the stress σ Indeed σ = B J R not valid locally, only when integrated over the conductor

Local BJR equivalent: What local stress would be if **every element** of each tape acted **independently**

 \Rightarrow Tape with no stiffness : it can go up to 2.8 GPa !

Effect of inhomogeneous J on stress distribution

We must also consider the interactions of the turns, with each other and with the flanges

- Glued edge (10 GPa) and turn to turn separation
 - Peak stress is reduced to 455 MPa, about 10 % than estimation using homogenous J

Edge impregnation concept: effectively reduce damage risks due to shielding currents without the drawbacks of full impregnation A. Badel presented at CEC/ICMC 2021

Conclusion

- We propose the "robust" coil concept for REBCO coated conductor.
- Robust against local degradation
 - The effectiveness of two tape co-winging is confirmed by damaged coil.
- Robust against mechanical stress
 - Edge impregnation: Thin flange helps containing the turns while keeping radial stress low on the tape
 - Turn to turn separation to limit the risk of delamination
 - Adjust the hoop stress profile
 - Reduce the screening current induced stress drastically
- Further studies are needed to check the performances of tape flange bonding

but experimental results so far are reassuring, even under high

stress

