Design and Implementation of a Bitonic Sorter-Based DNN Using Adiabatic Superconducting Logic

O. Chen¹, T. Tanaka¹, R. Cai², Y. Wang² and N. Yoshikawa¹

¹ Yokohama National University

² Northeastern University

Current Neural Networks

• Massive data required

Network	Model Size
LeNet-5	60,000
AlexNet	60M
BERT	340M

High-performance computing plays the key role (Data center, work station)

• Massive power consumed: (10% of nation's power consumption)

Facebook Data Center (Lulea, Sweden)

Performance: 27-51 PFLOP/s Power consumption: 84 MW (average) Small-scale power plant equivalent

Breakthrough in energy efficiency!

Hardware: Adiabatic Quantum Flux Parametron (AQFP)

Operational principle:

- Based on QFP (Goto et al.)
- Adopt adiabatic version of QFP (Takeuchi et al.)
 - (10²-10³ less energy dissipation comparing to QFP)

Ideal for the proposed neural network

N. Takeuchi et al., Supercond. Sci. Technol. 28, 015003 (2015).5

Data Propagation in AQFP

1-bit adder in AQFP

- Both combinational and sequential AQFP logic gates
- are driven by AC-power.
- Jata propagation direction The AC-power also servers as clock to synchronize gates outputs.
 - Data propagation in AQFP requires neighboring clock signals overlapping.
 - All inputs to any gate mush have the same delay from the primary inputs.

Majority Synthesis and Buffer Optimization

- AQFP MAJ = AND/OR
- Covert AOI to MAJ netlist when necessary
- Buffers and splitter insertions performed after target AOI converted to a MAJ netlist

Logic	AOI		MAJ w/ buffer optimization	
	JJ count	JJ level	JJ count	JJ level
C6288 (ISCAS)	78,246	180	25,870	94
32-bit RISC-V ALU	75,458	172	25,752	84

Placement and Routing

Notion of University Photosoft

- Placement
 - Genetic Algorithm
 - Decided cells combination to minimize area of circuit and length of interconnections.

Routing

Tanaka et al., IEEE TAS, 10.1109/TASC.2019.2900220

- Left Edge Algorithm
- Convert connection information between cells into actual layout.

- Stochastic computing (SC) is a paradigm that represents a number, by counting the number of ones in a bit-stream.
- Compatible with the deep-pipelining nature of AQFP
- Low hardware resource utilization.

- Adder tree for accumulation
- FSM for activation function
- Not ideal for AQFP technology

Bitonic Binary Sorter

- Efficient sorting design
- Ideal for AQFP:
 - All signals having the same delay.
 - All signals are duplicated at each stage

SC Blocks Design Approach

- SP is an input binary matrix. M is the number of inputs.
- SO in an output binary vector. N is the stream length.
- Convert input-output function to SC domain.
- How many 1s should be generated according to the number of 1s in the input matrix.

Feature Extraction Block

Output function:

$$\mathbf{SO} = clip(\sum_{i=1}^{M} SP_i, -1, 1)$$

Translate to SC domain: $\frac{2 \times \sum_{i=1}^{N} \mathbf{SO}_i - N}{N} = clip(\frac{2 \times \sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{SP}_{i,j} - N \times M}{N}, -1, 1)$

Factor all by N:
$$\sum_{i=1}^{N} \mathbf{SO}_i = clip(\sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{SP}_{i,j} - \frac{M-1}{2} \times N, 0, N)$$

For each bit generation cycle *j*:

$$\mathbf{SO}_{i} = clip(\sum_{i=1}^{n} \sum_{j=1}^{M} \mathbf{SP}_{i,j} - \frac{M-1}{2} \times N, 0, N) - \sum_{i=1}^{n-1} \mathbf{SO}_{i}$$
$$= \sum_{i=1}^{n-1} (\sum_{j=1}^{M} \mathbf{SP}_{i,j} - \frac{M-1}{2} - \mathbf{SO}_{i}) + \sum_{j=1}^{M} \mathbf{SP}_{n,j} - \frac{M-1}{2}$$

18

Summary

- A framework for AQFP-based DNN has been established.
 - Stochastic computing
 - Design automation
 - Hardware implementation

Technology	Power (µm)	Delay (ps)	EPC (fJ)
TSMC 12nm	18.449	0.35	6.4572
TSMC 28nm	34.141	1.49	50.8701
TSMC 40nm	61.967	2.57	159.2552
AQFP HSTP			0.0049

- Future works
 - Yield analysis
 - TNN implementation

Acknowledgment

BE THE FUTURE

Office of the Director of National Intelligence

ARPA

SuperTools Program

JSPS KAKENHI Grant Number 19K15041

The circuits were fabricated in the Clean Room for Analogdigital superconductivity (CRAVITY) of National Institute of Advanced Industrial Science and Technology (AIST) with the highspeed standard process (HSTP).

National Science Foundation Grant No. OISE-1854213