Korea Project for Developing Basic Technologies of a 10 MW Floating Wind Power Generator with HTS Magnet and Test Facility sponsored by KEPCO

Changwon National University Prof. Minwon Park

Jan. 8th 2020

p. 2

Output power & Torque of the wind power generators

Include new rotating machines

KEPCO project (From 2018.3 to 2021.2, about 6 M\$ for 3 years)

Project Title: Development of basic technology for floating offshore wind power system platform based on 10MW class superconducting wind power generator

Target: For 3020 new energy roadmap of Korean Government Development of a 10MW class HTS generator for floating offshore wind turbine

Basic specifications & configuration of the superconducting generator

p. 4

Angular dependency of the HTS field coil for generator

<Dimensions of the HTS coil>

<Designed HTS coil>

Wire width	12.5 mm
Wire thickness	0.25 mm
Number of turn	310 turn
Length of wire (Total)	2.89 km
Critical current (77 K)	93 A
Critical current (35 K)	341 A
Max. perpendicular field (77 K)	0.56 T
Max. parallel field (77 K)	0.78 T
Max. perpendicular field (77 K)	2.07 T
Max. parallel field (77 K)	2.86 T

Perpendicular magnetic field (77 K)

> Critical current of the HTS generator (@35 K) considering angular dependency

Detail specifications and optimal design

Parts		S**'s wire
	HTS wire width	12 mm
HTS wire	HTS wire thick.	0.15 mm
	Ic @77K, S.F.	600 A
	Num. of poles	40
	No. of HTS coil layers/pole	4
	Temperature	35 K
цтς	Insulation type	Metal insulation
coil Turns of HTS coil/layer/pole		310
	Effective length of HTS coil	700 mm
	Operating current	221 A (@35%margin)
	Total length of HTS wire	115.64 km
	Total diameter	8.23 m
Doculto	Total weight (incl.	124.8 ton
resuils	Maximum magnetic field	2.8 T
Perpendicular magnetic field		2 T

Stator

teeth

Structure design of the 10 MW wind generator

Detail configuration and materials

<10 MW HTS generator>

Stator coil

Density of the solid material in HTS generator

Parts	Materials	Density (kg/m³)
Stator wire	Copper	8,940
Stator teeth	35PN250	7,600
Magnetic shield	35PN250	7,600
	PartsStator wireStator teethMagnetic shield	PartsMaterialsStator wireCopperStator teeth35PN250Magnetic shield35PN250

	Parts	Materials	Density (kg/m ³)
	HTS wire	YBCO	7,877
t	Back iron	35PN250	7,600
, pa	Cryostat	SUS 304	8,190
otor	Supports	FRP	2,400
Å	Bobbins	Al6061	2,700
	Current leads	Brass	8,550

Structure design of the 10 MW wind generator

Detail configuration of the superconducting field coil

Simulation results of the 10 MW wind generator

Economic evaluation of the HTS generator

- ✓ Turbine capital cost: SCSG is \$13.4 million higher than PMSG.
- ✓ Balance of station cost: SCSG is a \$ 8.4 million savings from the reduction of SCSG's top head weight. (sea transport and construction costs such as crane installation and etc.)
- ✓ However, CAPEX is SCSG by \$ 5 million higher than PMSG.

Economic evaluation of the HTS generator

> OPEX(Operating Expenditure)

- ✓ Levelized Replacement Cost and O&M Cost: In the case of the SCSG, maintenance costs for cryogenic system are added. (+20%)
- ✓ Land Lease Cost: SCSG and PMSG are same.
- ✓ Therefore, OPEX has a SCSG of \$ 170,000 higher than PMSG.

Economic evaluation of the HTS generator

LCOE(Levelized Cost of Energy)

(HTS wire = 0.2 /A·m \rightarrow 0.05 /A·m)

Fatimation		SCSG (\$)	
Estimation	PINISG (\$)	Current	Future
BALANCE OF STATION COST (BOS)	32,996,634.54	23,001,179.88	22,805,818.01
TURBINE CAPITAL COST (TCC)	11,961,519.29	28,064,674.56	21,552,612.06
INITIAL CAPITAL COST	46,538,971.36	54,774,842.27	47,206,792.90
Installed Cost per kW	3,878.25	4,564.57	3,933.90
Turbine capital per kW sans BOS & Warranty	996.79	2,338.72	1,796.05
Levelized Replacement Cost(LRC)	199,218.75	239,062.50	239,062.50
Operations & Maintenance per turbine/year	782,856.56	939,427.88	939,427.88
Land Lease Costs (LLC); offshore bottom lease cost	43,288.84	43,288.84	43,288.84
CAPACITY FACTOR	0.38	0.38	0.38
AEP (kwh)	40,082,256	40,082,256	40,082,256.00
AOE (\$/kWh)	0.0256	0.0305	0.0305
FIXED CHARGE RATE (FCR)	5,389,212.88	6,342,926.74	5,466,546.62
LCOE (\$/kWh)	0.160	0.189	0.167

Lorentz force of the 10 MW wind generator

Estimated force of the superconducting field coil

Center for Advanced Power Technology Applications

Lorentz force of the 10 MW wind generator

Simulation results (Multiphysics; electromagnetic & mechanical)

CAPTA Center for Advanced Power Technology Applications

Lorentz force of the 10 MW wind generator

Simulation results (Multiphysics; electromagnetic & mechanical)

Lorentz force of the 10 MW wind generator

Technical limitation due to high torque

The strong superconducting magnet is the key factor of the rotating machine. The performance evaluation system is needed to verify that the magnet withstands strong force.

Long diameter machine

- Force/pole
- Strong structure, but paradox
- Torque disk all

2.5

1.5

0.5

 $\times 10^{4}$ 2 W/m

1.5

0.5

➤ Modeling of the PES based on the 10 MW wind generator

< Design of the superconducting generator >

< Design of the performance evaluation system>

Parameter	Value	Parameter	Value
Rated power	10.5 MW	Rated power(apply 2 poles)	525 kW
Rated L-L voltage	6.6 kV	Rated voltage(rms)	190.5 V
Rated rotating speed	10 RPM	Rated velocity	3.91 m/s
The num. of rotor poles	40 ea	The num. of rotor poles	3 ea

✓ Three HTS poles are required to make a pole pair (two poles).

➤ Modeling of the PES based on the 10 MW wind generator

• Comparison of the force values between the generator and PES

Part	Generator	PES	Error
Tangential force of the Stator	71.5 kN	72.2 kN	0.98%
Total output power (×pole number)	10.5 MW	10.6 MW	0.98%

Modeling of the PES based on the 10 MW wind generator

Modeling of the PES based on the 10 MW wind generator

mm

200

<DC source>

0.6

0.4

0.2

0

p. 23

0.6

0.4

0.2

Center for Advanced Power Technology Application

<AC source>

-200

0

200

200

Generator

00

200

PES

Simulation results of the PES

Center for Advanced Power Technology Applications

Cooling system of the PES

Cooling system with HTS modules

p. 25

Cooling system of the PES

Cooling system with HTS modules

Frame structure of the PES

≻Mechanical stress of the SUS frame

Maximum Stress: 73 Mpa Maximum displacement: 1.63 mm

- ✓ Tensile strength: 550 MPa
- ✓ Allowable stress: 165 MPa
- ✓ Simulation result: 73 MPa

Items	Values
Tangential force	70 kN (7,138 kg)
Radial and weight force	99.35 kN (10,131 kg)

✓ The maximum stress of the frame structure of the PES generated by the HTS magnets is 73 MPa, that means the frame withstands the HTS magnet force. (therefore, it is stable.)

Stator module of the PES

➤Stator core and copper coils

- MC nylong jig was mounted with the iron-core to support copper coils.
- ✓ The material of iron-core is 50PN470 which is silicon laminated steel and it is general material for the rotating machine.

Outlook of the PES1

Whole system configuration of the PES

Outlook of the PES2

00

6,190 mm

6,190 mm

Area of the fixed type PES :

6,190 mm x 5,826 mm (L x W)

Rotor part

5,826 mm

0

- Stator parts
- Stator plate
- Supports
- Iron plate
- Cooling system
- Chiller
- Compressor

5,826 mm

Scenario of the VR research

Scenario of the VR research

Collaboration method of the 3D model and FEM to the virtual reality

Center for Advanced Power Technology Applications

Flowchart of the virtual reality developing

Following virtual reality software to use through virtual reality developing

3D model of a 10 MW wind turbine

For connection with VR system (Wind turbine)

3D model of a 10 MW wind turbine

For connection with VR system (Superconducting generator)

VR hardware and software system

Setup and installation of the VR devices and software

VR with CATIA 3D program

Collaboration with wind turbine 3D model and motion

Motion of the 3D model in the VR

p. 38

VR with COMSOL FEM program

Collaboration with COMSOL

Scenario of the research

Scenario about wind turbine

Scenario (Virtual reality wind turbine)

Basic design and calculation of the MW class generator

Designed and calculated in Excel write script code

Designed 3D model in the CATIA

Script run with MagNet and analysed distribution of the electromagnetic of the gen.

Confirmed output power and torque using MagNet and Origin

To analyse mechanical stress of the generator using COMSOL

To analyse heat load of the generator using COMSOL

To convert 3D model format .CAT to .STL .STL file import to the Blender

Make animation or action in the Blender or Unreal engine

Make pushable and moving button and motion in the application development software Animation or 3D file import to the Unity or TechViz

Unity or TechViz connected with VIVE VR HMD

3D result collaborated with VR environment

<Virtual reality wind turbine>

Thank you for your attention