

Cryogenic Detectors with Superconducting Thermometers for Low-Mass Dark Matter Searches



Lucia Canonica Max Planck Institut für Physik, München

ASC 2018 Seattle, WA, November 2<sup>nd</sup> 2018



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

#### The Standard Model of Cosmology

The standard model of Big Bang cosmology explains many properties of our universe (CMB, LSS, BBN)



#### Ţ

# The Dark Matter problem

- The model implies also the existence of Dark Matter
- Compelling evidence for Dark Matter on various cosmological scales (galaxies rotation curves, gravitational lensing...)



Source: ESA and the Planck Collaboration



Source: NOAO, AURA, NSF, T.A.Rector.



Source: NASA, JPL-Caltech, SDSS, Leigh Jenkins, Ann Hornschemeier (Goddard Space Flight Center) et al.

#### What do we know about Dark Matter?

Ę

- It has mass
- It is non relativistic (structure formation)
- It is dark: does not interact e.m.
- Non baryonic
- Stable (or extremely long-lived)

Great variety of theoretical motivated dark matter particle candidates with a wide range of mass and cross section.





# In a picture



5

Nov. 2, 2018

## **Complementary approaches**



#### **Production at accelerators**

$$p + p \rightarrow \chi \overline{\chi} + a$$
 lot

Indirect detection  $\chi \chi \rightarrow \gamma \gamma, q \overline{q}, ...$ 





# **Direct Dark Matter detection**

#### Most common scenario for the DM interaction:

- WIMP in the galactic halo
- Scattering off nuclei
- Elastically and coherently
- Spin independently

#### **Expected nuclear recoil rate**

$$\frac{dR}{dE_R} = N_T \cdot \frac{\rho_{dm}}{M_{dm}} \int dv \, v \frac{d\sigma}{dE_R}(v, E_R)$$



| $\sigma$               | DM-nucleus cross section                                                        |
|------------------------|---------------------------------------------------------------------------------|
| $ ho_{dm}$             | DM density                                                                      |
| $N_T$                  | Number of target nuclei                                                         |
| $M_{dm}$               | Mass of the DM particle                                                         |
| v                      | Velocity of the DM particle                                                     |
| $E_R$                  | Nuclear recoil energy                                                           |
| $M_{dm}$<br>v<br>$E_R$ | Mass of the DM particle<br>Velocity of the DM particle<br>Nuclear recoil energy |

### Nuclear recoil energy spectra





8

L. Canonica, Max Planck Institut für Physik

F

Nov. 2, 2018

# **Detection challenges**

- Detection challenges:
  - Small recoil energies (~eV to ~keV, depending on the cinematic)
  - Low interaction rate. (Current best limit from XENON experiment, *Phys. Rev. Lett.* 121, 111302, 2018  $\sigma < 4.1 \cdot 10^{-47} cm^2$  for M<sub>dm</sub> ~25GeV)

- Requirements for a DM detector:
  - Low energy threshold
  - Large detector mass
  - Low background —> Underground Location

# Detection challenges

- Detection challenges:
  - Small recoil energies (~eV to ~keV, depending on the cinematic)
  - Low interaction rate. (Current best limit from XENON experiment, *Phys. Rev. Lett.* 121, 111302, 2018  $\sigma < 4.1 \cdot 10^{-47} cm^2$  for M<sub>dm</sub> ~25GeV)

- Requirements for a DM detector:
  - Low energy threshold
  - Large detector mass
  - Low background —> Underground Location



## **Experimental site**



F



#### Laboratori Nazionali del Gran Sasso (Italy)



## CRESST @ LNGS

#### **Cryogenic Rare Event Search with Superconducting Thermometers**



F

# The CRESST Collaboration

#### ~50 Collaborators:

- 16 MPP, DE 8 HEPHY, AT
- 14 TUM, DE
- 4 Tubingen, DE
- 8 LNGS, IT
  - 1 Oxford, UK



L. Canonica, Max Planck Institut für Physik

# The CRESST detector

**Cryogenic Rare Event Search with Superconducting Thermometers** 

- Direct detection of Dark Matter particles via their scattering off target nuclei
- Target: Scintillating CaWO<sub>4</sub> crystals
- Operated as cryogenic calorimeters (~15mK)
- Double read-out cryogenic detector: heat (CaWO<sub>4</sub>) and light (Light detector)
- Transition Edge Sensor (TES) for read out





Ę

# Cryogenic calorimeter

Absorber Thermometer Thermal link Heat sink (~15 mK)

F

# Cryogenic calorimeter



Ţ

# Cryogenic calorimeter



=

## **Particle Identification**

If the absorber is also an efficient scintillator the energy is converted into heat + light

**F** 



# **Particle Identification**

Amplitude [V]

e/y

Light

Phonon

If the absorber is also an efficient scintillator the energy is converted into heat + light

=

**Excellent discrimination** between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)



Amplitude [V

Nuclear Recoil

### Particle Identification

Amplitude [V]

0.8

0.6

0.4

02

20

e/y

If the absorber is also an efficient scintillator the energy is converted into heat + light

=





Light

40 60 80 100 120 140 160 180

Phonon

Amplitude [V

0

0.6

02

0

Nuclear Recoil

20 40 60 80 100 120 140 160 180

e /γ

α

0 W

150

L. Canonica, Max Planck Institut für Physik

# **Transition Edge Sensors**



**F** 



- 2.4x0.85 mm<sup>2</sup> W film, 200 nm thick, directly evaporated on the absorber
- Al film for phonon collection and electrical read out
- Sputtered Au film for thermal connection to the heat bath (~100pW/K at 10mK)
- Separated heater used to stabilize the TES at its operating point.
- Transition temperature ~ [10 20] mK



# **Detector operation**



- W-TES equipped with heaters
- Stabilization of detectors in the operating point with an almost constant current
- Injection of heat pulses for calibration and determination of trigger threshold
- Stabilization of the TES in an operating point within a few µK.



**F** 

# CRESST-II results - 2015

Crystal: Lise (mass ~300 g)

Exposure: 52 kg day

Background level  $\approx 8.5$  counts/(keV kg day)







Until 2017 world-leading below 1.7GeV/c<sup>2</sup>

Opened up sub-GeV/c<sup>2</sup> regime

Hunting light dark matter requires low threshold and low background!

# CRESST-II results - 2015

24

Crystal: Lise (mass ~300 g)

Exposure: 52 kg day

Background level  $\approx$  8.5 counts/(keV kg day)

**Threshold: 307eV** 





Until 2017 world-leading below 1.7GeV/c<sup>2</sup>

Opened up sub-GeV/c<sup>2</sup> regime

Hunting light dark matter requires low threshold and low background!

## Towards low thresholds

- Detector layout optimized for low-mass dark matter: reduction of crystal dimension (from 300g to 24g, 20x20x10 mm<sup>3</sup>)
- TES design optimisation
- Cuboid fully scintillating housing
- Instrumented holders







# **CRESST-III** detectors



#### 10 detectors operating in Gran Sasso from July 2016 to February 2018

L. Canonica, Max Planck Institut für Physik

## **Optimum thresholds**



5 detectors reach/ exceed the CRESST-III design goal

F

## **Optimum thresholds**



5 detectors reach/ exceed the CRESST-III design goal

#### **NEW FRONTIER IN DIRECT DM DETECTION**

L. Canonica, Max Planck Institut für Physik

## **Detector A**



Data taking period: 10/2016 – 01/2018 Target crystal mass: 23.6 g Gross exposure (before cuts): 5.7 kg days Energy threshold: 30.1 eV

- Analysis chain includes selections on:
  - *Rate*: to select stable noise conditions
  - Stability: to select detector(s) in operating point
  - Data quality: Non-standard pulse shapes are discarded
  - *Coincidences*: rejected events in coincidence with iSticks, with other detectors and with muon veto



#### Neutron calibration data



L. Canonica, Max Planck Institut für Physik

#### Dark matter data



31

L. Canonica, Max Planck Institut für Physik

**F** 

Nov. 2, 2018

#### Dark matter acceptance region



Acceptance region defined before unblinding

L. Canonica, Max Planck Institut für Physik

F

Nov. 2, 2018

## Energy spectra



**F** 



• 445 events in the acceptance region

## Energy spectra



- 445 events in the acceptance region
- Unexpected rise of event rate <200 eV</li>

L. Canonica, Max Planck Institut für Physik



# Result



#### Ţ

### Result



#### → Background limited

L. Canonica, Max Planck Institut für Physik

36

Nov. 2, 2018

# Result



#### → Performance "limited"

L. Canonica, Max Planck Institut für Physik

37

Nov. 2, 2018

# What's next?

Short term: Upgraded detector modules with dedicated hardware changes to understand source of excess events (different crystal absorbers, different detector holders)

Long term: Major upgrade of the experiment is foreseen to start next year. Goals: increase the number of channels to 100 and further improve threshold and background





# Conclusions

- Cryogenic calorimeters represent a well established technology for the investigation of dark matter and other rare event searches.
- CRESST has reached an unprecedented low nuclear recoil thresholds of 30eV, and is leading sensitivity over one order of magnitude in the region at 160MeV/c<sup>2</sup>.
- Cryogenic calorimeters are complementary to noble liquids for the investigation of dark matter properties.
- New explorative run is ongoing to investigate the source of excess events.

# Conclusions

- Cryogenic calorimeters represent a well established technology for the investigation of dark matter and other rare event searches.
- CRESST has reached an unprecedented low nuclear recoil thresholds of 30eV, and is leading sensitivity over one order of magnitude in the region at 160MeV/c<sup>2</sup>.
- Cryogenic calorimeters are complementary to noble liquids for the investigation of dark matter properties.
- New explorative run is ongoing to investigate the source of excess events.

