NM-5

SuNAM's Coated Conductor Development for NMR/MRI Applications

Jae-Hun Lee, Ho-Kyum Kim, Jaemin Kim, Hunju Lee^{*} and Seung-Hyun Moon

SuNAM Co., Ltd.

Oct. 13, 2021.

Contents

- What SuNAM is doing
- SuNAM's coated conductor
- > CC architecture & process
- RCE-DR process for superconducting layer
- > Quality control \rightarrow Uniform, high-I_c tapes
- New RCE-DR system
- Introduction of pinning center; mid-T, mid-B I_c enhancement
- Preliminary results on various RE's other than Gd
- Summary

What SuNAM is doing

High Field Magnets

HTS 2G Wire Process of SuNAM

Product Portfolio

[2G HTS wire portfolio]

Item	AN	CN	LBS / LSS		
Cover layer	Silver	Copper	Brass / Stainless steel		
Substrate	Non-Magnetic Stainless steel (STS310S ~104 um) or Ni-alloy (Hastelloy C-276 ~ 62 um)				
Width [mm]	4 / 12 standard width 2/3/5/6/7/8/9/10 special order				
Thickness [mm] *depending on Substrate	HAS : 0.10 STS : 0.14	HAS:0.10 STS:0.14	STS substrate only LBS : 0.29 / LSS : 0.23		
Final Process	Sputter Electro-plating Single side L		Single side Lamination		
Critical Current (@ 77K s.f.)	4 mm width : > 150 A, 200 A, 250 A 12 mm width : > 500 A, 600 A, 700 A, 800 A				

Brass / Stainless steel	Single side Lamination			
Copper	Surrounded Copper layer	1		LB
Silver	Silver Cover layer			/ S
GdBCO	GdBCO Superconducting layer		Ž	
Buffer layer	Al ₂ O ₃ / Y ₂ O ₃ / MgO / LMO	В	В	L S
Substrate	Substrate Substrate Non-magnetic Stainless steel or Hastelloy C-276		odel	mode
Silver	Silver Cover layer			
Copper	Surrounded Copper layer			

RCE-DR for Superconducting Layer Deposition

- RCE-DR : Reactive Co-Evaporation by Deposition & Reaction (SuNAM, Reel-to-Reel)
- High rate co-evaporation at low temperature & pressure to the target thickness(> 1 μm) at once in deposition zone (6 ~ 10nm/s)
- Fast conversion(up to 100 nm/sec) from amorphous glassy phase to superconducting phase at high temperature and oxygen pressure in reaction zone
- Simple, high deposition rate, large deposition area...
- Easy to scale up :single path
- Verified for Gd, Y, Sm, Pr ...

High production throughput, high J_c & low cost

Quality Control : RHEED Vision System

 An appropriate feedback algorithm can keep the shape of the RHEED spot in the specific range, while QCM monitoring to adjust the e-gun power.

Feedback based on RHEED spot analysis

- Because of different evolution of Δφ & Δω, optimization is very important for high quality 2G wire.
- Intensity & tilt angle of MgO (110) spot is one of the most important parameter.

F

Quality Control : RCE Vision Inspection System

F

F

Quality Control : RCE Vision Inspection System

RCE Vision System will be introduced for increasing the uniformity of composition in RCE-DR process. The control computer takes (RGB) values in three-dimensional vector space which is transformed from the color of the tape surface.

Integration of process notes & wire performance

Ę

Results of process optimization of in-line control

New RCE-DR system with 100 kW e-gun

- Installation of 100kW class e-gun on RCE-DR at the end of 2019.
- As e-gun power increases,
 - \rightarrow various pinning materials can be deposited (Zr, Hf, Sn etc.)
 - \rightarrow Deposition rate can be increased (10 nm/sec \rightarrow > 25 nm/sec)
 - \rightarrow Other rare earth materials can be deposited (Y, Y-Gd, Sm etc.)
 - Y : High power e-gun is required to sweep wide areas for stable long-length process
- Development of 40 mm ~ 120 mm-width coated conductor manufacturing process

SUN Capacity increase, pinning center introduction and wider tape process

RCE-DR system with 100kW class e-gun

Various beam patterns can be applied to each material

100 kW class E-gun

Real-time Automatic Composition Control Program

F

Enhancement of magnetic properties by RCE-DR process

• TEM result : YBCO-ZrO₂

- Second phases are observed as self-pinning center such as $Y_2O_{3'}$ CuO_x and $Y_2Cu_2O_5$
- Y₂O₃ particles are close to spherical, not agglomerated in YBCO
- While there are large $Y_2Cu_2O_5$ particles in top region, few
- $Y_2Cu_2O_5$ particles in bottom region : optimization in progress.

BZO nanoparticles in YBCO

- Visible in higher magnification image
- About 10~20 nm in diameter
- Random, non-uniform distribution : optimization in progress.

F

Home-made I_C(B, T, θ) measurement set-up

- Magnet manufactured circa 2013
- Conduction-cooling, no-insulation magnet
- Brass laminated tape was used
- ➢ Field up to 4 T
- Temperature down to 15 K
- Current up to 1,000 A
- Rotating sample holder

	100 mm	200 mm
Number of DPC	22	28+2(12 mm)
Number of turns	110	133
Tape length per DPC	111 m	232 + 255 m
Total tape length	2,452 m	6,496 + 510 m

 $< I_C(B-T-\theta)$ measurement system >

Enhancement of magnetic properties by RCE-DR process

F

Production and optimization of new RCE-DR with
100kW e-gun installed to improve magnetic field
characteristics

- For YBCO-ZrO₂, the critical current under magnetic field increased more than twice compared to GdBCO, although 77 K, s.f. values are less than half those of GdBCO.

- Research is underway to add not only ZrO₂ but also various RE (rare earth) materials and pinning materials (Hf, Zr, etc.).

Summary

- SuNAM has been producing high I_c coated conductors consistently.
- We set up a new machine to evaporate pinning materials.
- We found that incorporation of BZO is possible with RCE-DR process and achieved ~2.5X enhancement at 3 Tesla, 20 K.
- Optimization for higher field property is under way.

Thanks for Attention !

