

Cryogenics for the Large Hadron Collider (LHC): from construction to operation and future upgrades

Philippe Lebrun CERN, Geneva, Switzerland

Cryogenic Engineering Conference / International Cryogenic Materials Conference Anchorage, Alaska, 17-21 June 2013

2012, a remarkable year for physics

The largest scientific instrument in the world... 27 km in circumference

...serving the community of particle physicists 11'000 users from around the world

Distribution of All CERN Users by Location of Institute on 14 January 2013

The superconducting magnets of ATLAS

Central solenoid Diameter 2.5 m Magnetic field 2 T Stored energy 39 MJ

The liquid argon calorimeters of ATLAS

Barrel

120 t mass, 40 m³ liquid argon

End cap

220 t mass, 19 m³ liquid argon

Cryogenics for ATLAS argon calorimeters

Temperature uniformity < 0.3 K

Temperature stability < 0.02 K

Argon purity between 0.1 and 0.3 ppm O₂ equivalent

Operation 365/365

ATLAS cryogenic refrigeration

ATLAS cryogenics availability

The superconducting solenoïd of CMS

CMS cryogenics

Two-phase thermosyphon cooling

1.5 kW @ 4.5 K helium refrigerator

CMS cryogenics availability

J. Bremer

CERN

- Does this description of nature remain valid at energies >> 1 TeV?
- How should it be modified to account for unexplained phenomena (matter-antimatter asymmetry, «dark» matter in the universe, cosmological inflation, quantum gravity)?

Workhorses of discovery: hadron colliders Progress in technology helps contain increase in size!

View of the LHC in tunnel

23 km of superconducting magnets 1232 dipoles, 474 quadrupoles, 7612 correctors

Twin-aperture superconducting dipoles $B_{nom} = 8.33 \text{ T}, I_{nom} = 11850 \text{ A}$

Industrial solutions for a 23 km cryostat Thermal budget ~ 0.2 W/m @ 1.9 K

Low heat inleak GFRE support post

Aluminium extrusion for thermal shield, with built-in cooling channel

1EOrC3-01 – Tuesday 10h30

Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium?

Prefabricated MLI blankets around thermal shield and cold mass

Cryogenic tests of magnets at CERN

- On all magnets
 - Mechanical integrity and leaktightness after cooldown
 - Electrical integrity after cooldown and under helium
 - Integrity of instrumentation and protection systems
 - Quench performance at 1.9 K

- On a sample of the total production
 - Magnetic measurements
 - Transfer function, field quality at 1.9 K
 - Cold-to-warm correlations
 - Geometry and magnetic axes
 - Dynamic effects

Interconnections in tunnel

65'000 electrical joints Induction-heated soldering Ultrasonic welding *Very low residual resistance HV electrical insulation*

<image>

40'000 cryogenic junctions

Orbital TIG welding

Weld quality

Helium leaktightness

Current leads using HT superconductors

13 kA HTS current lead

⇒ capital: save extra cryoplant

⇒ operation: save ~ 3.2 MW

Layout of the LHC cryogenic system

- 5 cryogenic islands
- 8 cryogenic plants, each serving adjacent sector, interconnected when possible
- Cryogenic distribution line feeding each sector

Superfluid helium as a technical coolant

Thermophysical properties of superfluid helium and engineering applications

- Temperature < 2.17 K
 ⇒ superconductor performance
- Low effective viscosity ⇒ permeation
 - 100 times lower than water at normal boiling point
- Very high specific heat ⇒ stabilization
 - 10⁵ times that of the conductor by unit mass
 - 2x10³ times that of conductor by unit volume
- Very high thermal conductivity
 ⇒ heat transport
 - 10³ times that of OFHC copper
 - Peaking at 1.9 K
 - Still, insufficient for transporting heat over large distances across small temperature gradients

Heat transfer across electrical insulation of LHC superconducting cable

800

600

ть =

,9 K

A16

A19

Conduction in polyimide

A15

Double wrap with partial overlap maintains porosity and percolation paths in electrical insulation of superconducting cable

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 Steady-state conduction in He II p from 1.9 to 1.8 K

Linear distributed heat load

45 T hybrid magnet at NHMFL

Magnet string cooling with superfluid helium Getting the best of helium transport properties

• Excellent thermal conductivity

Magnet temperature profile in LHC sector

18 kW @ 4.5 K helium refrigerators

High thermodynamic efficiency COP at 4.5 K: 220-230 W/W

Linde.

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 2.4 kW @ 1.8 K refrigeration units Cold hydrodynamic compressors with active magnetic bearings, rotational speed 100-800 Hz

IHI-Linde Cycle

33 of 56

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 **Controls for LHC cryogenics** 21300 AI, 7000 AO, 18400 DI, 4200 DO 4700 analog control loops

34 of 56

Cryogenics in CERN Accelerator Control Centre

Display of cryogenic operation indicators

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 Precooling 37'500 t magnets with 10'000 t liquid nitrogen

Cooldown to 80 K: 600 kW per sector with up to ~5 tons/h liquid nitrogen

Helium inventory management

Total He inventory of LHC accelerator: 135 tons On-site storage: 125 tons « Virtual » storage contract: 60 tons

Storage capacity GHe @ 2 MPa, Tambient: - 58 x 250 m³ tanks - 40 x 80 m³ tanks Storage capacity LHe @ 0.1 MPa, 4.5 K: - 6 x 120'000 liter vacuum-insulated vessels

Availability of LHC cryogenics

Sources of beam dumps at 4 TeV

M. Zerlauth

LHC warm-up Spring 2013

He «virtual storage» 2013-2014

- **Spring 2013**: 93.5 t He extracted from LHC, reliquefied and «virtually stored» in standard containers (22 truckloads) put back on the market
- Spring 2014: LHC refill foreseen at ~2 truckloads/week

First long shutdown Superconducting magnet & circuit consolidation

- Interconnections
 - Total magnet-to-magnet interconnects: 1695
 - Total high-current splices: 10'170
 - Splices to be re-done ~ 1500
 - Shunts to be applied > 27'000 (all splices)

- Magnets to exchange: 19
- Electrical feedbox consolidation
- DN200 relief plate installation on cryostats

First long shutdown Radiation to electronics

- More than 100 electronic racks relocated in radiation-protected areas
- Installation of additional shielding
- Upgrades of critical systems: power converters, quench protection

1EOrC6-03 – Tuesday 11h00 Analysis of the failures and corrective actions for the LHC cryogenics radiation-tolerant electronics and its field instruments

45 of 56

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 HL-LHC project Changes around the ring

CÊRN

HL-LHC Project Changes to the Interaction Regions

1EPoE1-04 – Tuesday (Poster)

Cooling options for the LHC high-luminosity upgrade final focusing magnets

Target: 200 T/m gradient at 1.9 K

LQS03: **208 T/m** at 4.6 K **210 T/m** at 1.9 K 1st quench: 86% s.s. limit

49 of 56

Development of SC «crab» cavities

Brookhaven National Laboratory (USA)

Old Dominion University & Jefferson Lab (USA)

Cockroft Institute & Lancaster University (UK)

SC links for HL-LHC

Compound SC cable using MgB_2 wires

27 cables 6000 A 48 cables 600 A Itot = 190 kA (\sim 2 × 95 kA) Total length of conductor ~1000 km

20 kA

LHe (4.2 K)

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013

Test station for SC links

GHe (5 K to 70 K)

LHC beyond 2030 Key technology: very high-field magnets

L. Rossi

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2013 Staging of superconductors minimizes use of (expensive) HTS

Would yield 33 TeV collision energy in LHC tunnel, 100 TeV in new 80 km tunnel

Magnet design very challenging: 300 mm inter-beam; anticoils to reduce stray flux; multiple powering in the same magnet for field quality

Conclusions

- The LHC, the largest application of high-field superconducting magnets and superfluid helium cryogenics, has been running smoothly up to 8 TeV collision energy
- After three years of operation delivering an integrated luminosity of 30 fb⁻¹, the discovery of a **Higgs boson** is the first major physics result, calling for further studies of the properties of this new particle
- Exploitation of the full potential of the LHC is the first priority of the European Strategy for Particle Physics, recently updated and approved by the CERN Council
- 2013-2014 will be occupied by a long shutdown primarily devoted to consolidation of the magnet interconnections, in order to ultimately reach 14 TeV collision energy
- The luminosity upgrade program HL-LHC, developing along several parallel lines including high-field magnets using Nb₃Sn and SC RF «crab» cavities, will enable to deliver 3000 fb⁻¹ by 2035
- These technological developments open the way for possible energy upgrade with collision energy around 30 TeV using 16 to 20 T magnets in the same tunnel, or up to 100 TeV in a new ~80 km tunnel