

Developments related to topology in superconducting electronics

Source: Scientific American

Hans Hilgenkamp University of Twente \&

Leiden University
The Netherlands

My intentions for this talk:

Convey in accessible words developments in (quantum)-information processing using superconducting devices, with topological quantum computation as the most far-out concept.

This talk will not be a comprehensive review, nor a complete account for all the groups working on these topics, and I will avoid all kinds of detail.

WEEE/CSC \& ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013 ICMAB from discovery to applications

Such changes upon swapping particles

 are the basis for the concept of Topological Quantum Computation
A third category:

Anyons:

$$
\Psi\left(r_{2}, r_{1}\right)=e^{i \alpha} \Psi\left(r_{1}, r_{2}\right)
$$

Wikipedia on topology:

Topology as a branch of mathematics can be formally defined as the study of qualitative properties of certain objects (called 'topological spaces') that are invariant under a certain kind of transformations (called a continuous map), especially those properties that are invariant under a certain kind of equivalence (called homeomorphism).

Notable examples of topological defects are obs Lamdba transition universality class systems incl screw/edge-dislocations in liquid crystals, magn ϵ tubes in superconductors, vortices in superfluids

U. ESSMANN and H. TRÄUBLE

Institut fiir Physik am Max-Planck-Institut fiir Metallforschung, Stuttgart and Institut für theoretische und angewandte Physik der Technischen Hochschule Stuttgart

Received 4 April 1967

A.A. Abrikosov

Triangular flux line lattices have been observed by electron microscopy on $\mathrm{Pb}-4 \mathrm{at}$ 身 In and niobium specimens in the remanent state. These lattices contain various kinds of defects.

The Abrikosov solution [1] of the GinsburgLandau equations [2] for the mixed state of type II superconductors predicts a periodic arrangement of flux lines (flux line lattice) penetrating the specimen parallel to the applied field. Neutron diffraction studies $[3,4]$ on niobium and nuclear magnetic resonance studies on vanadium [5] give evidence for the existence of a close packed arrangement of flux lines.

In this paper we present results on the flux line arrangement obtained by sirect observation of individual flux lines. As was shown in previous papers [6-8], the magnetic structures on the surfaces of ferromagnets and superconductors can be revealed with a resolution of about $500 \AA$ or better by depositing small ferromagnetic particles on the specimen and observing the resulting patterns in the electron microscope by means of a replica technique.

We report here the magnetic structures of $\mathrm{Pb}-4 \mathrm{at} \%$ In $(\kappa=1.35$ at $1.10 \mathrm{~K}[8])$ and niobium in the remanent state at $1.1^{\circ} \mathrm{K}$ based on observations on the end surfaces of well-annealed monoor polycrystalline rods (4 mm diameter, 50 mm length) that had been magnetized parallel to the rod axis in a field of 3000 Oe. Parts of the surfaces exhibited a quite well defined triangular lattice of "points of exit" of the magnetic flux (fig. 1). In polycrystalline $\mathrm{Pb}-4 a \mathrm{a} \% \mathrm{In}$ the lattice
parameter (nearest neighbour separation) is $a=3500 \AA$. If each of the indivudual spots is as-

Fig. 1. "Perfect" triangular lattice of flux lines on the surface of a lead-4at indium rod at $1.1^{\circ} \mathrm{K}$. The black dots consist of small cobalt particles which bave been stripped from the surface with a carbon replica.

Flux-quantization in Abrikosov vortices and superconducting rings

$$
\Psi(\vec{r})=\Psi_{0}(\vec{r}) e^{\mathrm{i} \varphi(\vec{r})}
$$

$$
\Delta \varphi=2 \pi \frac{\phi}{\phi_{0}}
$$

Single-valuedness of the wave function requires $\Delta \varphi=2 n \pi$ around the ring. This provides a form of 'topological protection'
-> flux cannot be $0.8 \phi_{0}$ or $1.3 \phi_{0}$

Flux quantization is the basis for many superconducting electronics / sensing devices

RSFQ Flip Flop
(adapted from S. Narayana \& V. Semenov)

Consumption of Microprocessor with Low-Voltage RSFQ Circuit (from Prof. A. Fujimaki - Nagoya)

$\left.\begin{array}{|l|c|c|}\hline & \begin{array}{c}\text { CORE1 } \alpha \text { Prototype with } \\ \text { Conventional RSFQ (2003) }\end{array}{ }^{[1]} & \begin{array}{c}\text { CORE1 } \alpha \text { with Low-Voltage } \\ \text { RSFQ (2013) }\end{array} \\ \hline \text { [2] }\end{array}\right]$
[1] M. Tanaka, et al., "A single-flux-quantum logic prototype microprocessor," ISSCC Dig. Tech. Papers, p. 298, Feb. 2004.
[2] M. Tanaka, Y. Hayakawa, K. Takata, and A. Fujimaki, "Design of Low-Voltage RSFQ Microprocessor Prototypes," to be presented at EUCAS, Genova, Italy, Sep. 2013.

SFQ examples

4 channel SNSPD readout and multiplexer circuit
$15 \mathrm{JJ} /$ channel

300 pixel TES array with integrated SQUID multiplexer for Atacama Pathfinder experiment (APEX) in Chili

Photograph - T. May IPHT Jena, Germany
T. May et al. Proceedings of SPIE 6949 (2008), 69490C

Digital magnetometer decimation filter 4 GHz operation 360 JJs

Photograph - R. Stolz IPHT Jena, Germany
J. Kunert at al. IEEE TAS, 23, (2013) 1101707

H. Hilgenkamp, EUCAS Brussels 2007
'Pi-phase shift Josephson structures',
Supercond. Science \& Techn. 21, 034011 (2008)

Triangular Ising lattice of half-integer flux quanta

Hilgenkamp, Ariando, Smilde, Blank, Rijnders, Rogalla, Kirtley \& Tsuei, Nature 422, 50-53 (2003)

IEEE/CSC \& ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013
Paper based on this presentation was published by Superconductor Science \& Technology (SuST, IOP) 27, No. 4, 044003 (2014).

RSFQ circuit using half-integer flux quanta

Ortlepp, Ariando, Mielke, Verwijs, Foo, Rogalla, Uhlmann \& Hilgenkamp, Science 312, 1495 (2006)

RSFQ circuit using half-integer flux quanta

Ortlepp, Ariando, Mielke, Verwijs, Foo, Rogalla, Uhlmann \& Hilgenkamp, Science 312, 1495 (2006)

From computation with flux quanta

to

quantum computation

Bits and qubits:

Classical bits Quantum bits (qubits)

$|0\rangle$
|1
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
with

Two attributes: Probability and Phase -> Bloch sphere representation

Superconducting qubits

Flux qubit
Charge qubit

J.E. Mooij et al., Science 1999

Y. Nakamura et al., Nature 1999

In addition:

Phase qubit 'cQED' 'Transmon' 'Quantronium' 'Fluxonium'
M.H. Devoret and R.J. Schoelkopf, Science 339, 1169 (2013)
J. Clarke and F.K. Wilhelm,

Nature 453, 1031 (2008)

Opportunities with qubits:

Faster calculations of complex problems, using dedicated algorithms

(best known example: Shor algorithm for integer factorization into prime numbers)

Quantum simulators for quantum materials

To enjoy the full benefits of quantum computation, entanglement is required

M. Steffen et al. (IBM)

Phys. Rev. B 86, 100506 (2012)

IPHT Jena + Karlsruhe, unpublished (with thanks to E. Il'ichev)

M.W. Johnson et al., (D-Wave) Nature 473, 194 (2011)

M.H. Devoret and R.J. Schoelkopf,

Science 339, 1169 (2013)

Status of superconducting qubits

Great progress has been achieved with various types of superconducting qubits, regarding extending coherence times, coupling/entangling via e.g. resonators, and inventing useful read-out and error-correction techniques.

However, the sensitivity to decoherence remains a major complication. This sensitivity on the other hand provides prospects for sensing applications.

Making (more) use of topological protection may be a way to overcome this problem.

The basic idea of topological quantum computation:

Split qubit into two parts, well separated from each other.
The information is encoded only in the combination of these states, which by themselves are much less sensitive to decoherence.

These two parts are anyons, which means that rotating them around each other changes their composite wave-function.

The anyons also have 'non-Abelian' character, meaning that the order of the rotations matters for the final outcome. This leads to the concept of 'braiding' as a method for topological quantum computations.

Recent intro-review on topological quantum computation:
A. Stern \& N.H. Lindner, Science 339, 1179 (2013)

Non-Abelian anyons and braiding

A Majorana particle is it's own antiparticle

$$
v=\bar{v}
$$

It cannot have energy ($E=0$) It cannot have a charge degree of freedom It cannot have a spin degree of freedom

Very well protected against decoherence, and therefore of interest for quantum computation

Ettore Majorana, 1906-1938(?)

Requirements for the formation of Majorana bound states:

I: They cannot have a spin degree of freedom Use materials in which the spin of the electrons is fixed. Every electron can have only one spin value.

II: They cannot have a charge degree of freedom Use the electron-hole symmetry in superconductors

III: They cannot have energy ($E=0$)
Use points where gap closes (at edges or in vortex cores)

1 Initialize

superconductor

2

 superconductor

$1 / 2 e+1 / 2 h$

3 Read-out

$|0\rangle$

|1)

Possible systems in which Majorana bound states can be realized

Topological (p-wave) superconductors $\left(\mathrm{Cu}_{x} \mathrm{Bi}_{2} \mathrm{Se}_{3}, \mathrm{Sr}_{2} \mathrm{RuO}_{4}\right.$?)

\Rightarrow Superconductors + topological insulators

Superconductors + semiconductors + magnetic fields

2D and 3D topological insulators

M. Franz, Physics 3, 24 (2010)

Coupling superconductors to topological insulators

M. Veldhorst ${ }^{1}$, M. Snelder ${ }^{1}$, M. Hoek ${ }^{1}$, T. Gang ${ }^{1}$, X. L. Wang ${ }^{3}$, V. K. Guduru², U. Zeitler 2, W. v.d. Wiel ${ }^{1}$, A. A. Golubov ${ }^{1}$, H. Hilgenkamp ${ }^{1,4}$, A. Brinkman ${ }^{1}$

Nature Materials 11, 417 (2012)

SQUID Modulation

Experimental realization of superconducting quantum interference devices with topological insulator junctions
M. Veldhorst, C.G. Molenaar, X.L. Wang, H. Hilgenkamp, and A. Brinkman Appl. Phys. Lett. 100, 072602 (2012).

See also: M. Veldhorst et al., PRB (2012)

Creating and manipulating Majorana bound states in 3D Ti Superconducting structures

C. Beenakker,

Annu. Rev. Con. Mat. Phys. 4, 113 (2013)

Possible systems in which Majorana bound states can be realized

Topological (p-wave) superconductors $\left(\mathrm{Sr}_{2} \mathrm{RuO}_{4}\right.$?)

Superconductors + topological insulators
\rightarrow Superconductors + semiconductors + magnetic fields

Mourik, et al., Science 336, 1003 (2012)
${ }^{100}$ Braiding operations in nanowire-based systems

J. Alicea et al., Nature Phys. 7, 412 (2011)

Conclusions:

Topology has been a key topic in applied superconductivity already for a long time.

Great current attention due to developments on topological insulators and Majorana's, in which superconductivity already plays a pivotal role.

Further developments on topological quantum computation to be expected, which may help to overcome decoherence problems.

But also with that, there is still a long way to go for quantum computers.

Time, patience, and devotion ...

