Modern AC Josephson voltage standards at PTB

Kryo 2013

ЫЯ

J. Kohlmann, F. Müller, O. Kieler, Th. Scheller, R. Wendisch, B. Egeling, L. Palafox, J. Lee, and R. Behr

Physikalisch-Technische Bundesanstalt

Josephson voltage standards

145030877 Hz

- important application of Superconductor Electronics
- unique characteristics for precision measurements (due to superconductivity: magnetic flux quanta)
- niche market
- DC applications: commercial suppliers, up to 10 V
- AC applications: under development motivation: extension of high accuracy from DC to AC goals: 1 V, 10 V, pure waveforms (achieved in part)

Requirements

* large series arrays of Josephson junctions

• Outline

- Fundamentals: AC Josephson voltage standards
- Technology: Nb_xSi_{1-x} Josephson junctions
- Josephson voltage standards for AC applications:
 - * binary-divided JJ series arrays (70 GHz drive)
 - * pulse-driven JJ series arrays
- Combing binary-divided array + pulse-driven array
- Conclusions and outlook

Work supported in part by the EU within EMRP JRP SIB59 'Q-WAVE'

Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

3

•

AC Josephson voltage standards

How to make an AC Josephson voltage standard?

$V_{n} = n \cdot m \cdot \Phi_{0} \cdot f$	f/GHz	15
- pulse-driven arrays	V ₁ / μV	30
<pre>binary-divided arrays (m = number of junctions)</pre>	No. JJ (10 V)	330 000

Both versions need overdamped JJs:

- SNS junctions shunted SIS junctions
- SINIS junctions S-Sc-S junctions

 $\overline{=}$

70

145

70000

Technological requirements

overdamped JJs

- robust, reliable, reproducible (10 V array: 70,000 JJs)
- different operation ranges: $V_{\rm C} \approx 150 \ \mu V$ (70 GHz), $j_{\rm C} \leq 10 \ kA/cm^2$ (binary-divided) $V_{\rm C} \approx 30 \ \mu V$ (15 GHz), $j_{\rm C} \approx 50 \ kA/cm^2$ (pulse-driven)
- high-resistance material for barrier required (binary metallic alloys not suitable): material near metal-insulator transition Nb_xSi_{1-x}: electrical junction parameters tunable by Nb content x from SNS-like (x > 0.12) to SIS (x < 0.08)

Co-sputtered Nb_xSi_{1-x} barrier JJs

Nb_xSi_{1-x} double-stacked JJs

Stacked junctions for higher integration

Barrier: homogeneous, amorphous (TEM)

Programmable voltage standards (PJVS) PTB

•
$$V_n = n \cdot m \cdot \Phi_0 \cdot f$$

Ţ

- overdamped Jos. junctions
- binary-divided series array

D/A converter with fundamental accuracy

9

•

• •

• •

•

PJVS: 10 V SNS arrays – fabrication

PTB process similar to fundamental SNEP (7 levels)

PTB

e-beam lithography until wiring level (DC circuit)

ground and load are deposited on top of the circuit (1.5 μ m SiO₂ as dielectric layer)

10

.

• •

PIB

PJVS: 20 V SNS arrays – measurement

F. Mueller et al., IEEE Trans. Appl. Supercond. 23 (2013) 1101005

11

Ţ

Pulse-driven Josephson arrays

$$V_n = n \cdot m \cdot \Phi_0 \cdot f_p$$

computer

pulse-patterngenerator (PPG)

SNS JAWS chip @ 4,2 K

spectrum analyzer

quantized waveform

Pulse-driven Josephson arrays ۲

PTB

Josephson Arbitrary Waveform Synthesiser (JAWS)

 $\overline{=}$

Pulse-driven Josephson arrays

 Josephson Arbitrary Waveform Synthesiser (JAWS)

PIB

Ţ

14

•

Combination of PJVS and JAWS?

PTB

pure waveforms and higher voltages?

•

15

•

(

PJVS + JAWS: principle

Goal: spectrally pure signals of 1 V (10 V)

- **PJVS:** stepwise signal, higher harmonics; transients
- JAWS: harmonics of PJVS signal are compensated

F

• PJVS + JAWS: setup

 $\overline{=}$

•

17

• •

•

R. Behr et al, IEEE Trans. Instrum. Meas. 62 (2013) 1634

Conclusions and outlook

The PTB is a member of FLUXONICS e.V. (www.fluxonics.org)

19

•

• •

Conclusions and outlook

The PTB is a member of FLUXONICS e.V. (www.fluxonics.org)

Kryo 2013, Bad Herrenalb 20		•	•	•	•	•	•	•	•
-----------------------------	--	---	---	---	---	---	---	---	---

Ţ