ASC, 10-15 August 2014, Charlotte, NC, USA

R. Flükiger

CERN, TE-MSC and Dept. Phys. Cond. Matter, University of Geneva Geneva, Switzerland

Outline

- I. The system MgB₂
- II. MgB₂ wires: fabrication and properties
- III. Future perspectives: performance and costs
- **IV. Applications**
 - A. Magnetic Resonance Imaging at 20K
 - B. High current cables: LINK project (CERN
 - C. Applications of ultra-thin MgB₂ wires
 - D. Development of special magnets
 - E. Wind generators
 - F. Renewable energy applications
 - G. Persistent mode bulk magnets (levitation)
 - H. Space applications

Conclusions

Advantages of MgB₂ in view of applications

MgB₂ has to be considered a niche material, for special purposes. However, recent developments show: its application range is gradually increasing.

MgB₂ conductors present the following advantages:

- Low material cost
- Multifilamentary wires (low losses)
- No weak pinning effects
- Low mass density
- Operation in the persistent mode

For selected applications, the combined advantages of MgB₂ may be decisive with respect to HTS superconductors

Perfect order and stoichiometry

The *perfectly ordered* compound MgB₂ is also *stoichiometric*. It has a very narrow equilibrium phase field: no deviation from the ideal composition has been reported so far. The value of T_{r} for bulk samples and single crystals is very close to 39 K.

However, this value can be influenced by impurities and by mechanical stress. It has been shown by *X.X. Xi et al. in Physica C 456,22(2007)* that on high quality 770 nm thick films produced by Hybrid physical-chemical vapor deposition (HPCVD) on sapphire substrates, T_c can even reach 40.3 K. The corresponding value for the normal state electrical resistivity ρ_o was as low as 0.1 $\mu\Omega$ cm (RRR=80).

This is the lowest reported value of ρ_0 of all known superconductors. Only the A15 type compound V₃Si - also **stoichiometric and perfectly ordered** - has a similarly low value: $\rho_0 = 1 \ \mu\Omega$ cm (for comparison, the lowest value for Nb₃Sn single crystals is close to $\rho_0 = 4 \ \mu\Omega$ cm).

The effect of Carbon addition on T_c and B_{c2}

Carbon was found to substitute B in the MgB_2 lattice, inducing a decrease of T_c and a lowering of the electronic mean free path. As a consequence, the value B_{c2} increases considerably, by almost a factor 2.

Hässler et al. (2008) found a value of 34 T for $B_{c2}(0)$; slightly higher values were found by M. Susner (PhD work, 2012). The maximum of J_c is observed for x ~ 0.12 in the formula (MgB_{2-x}C_x), corresponding to ~ 6.5 % Carbon in Boron (W. Hässler et al, 2008). At this composition, T_c is close to 30K.

As shown by X.X. Xi (2008) and also by specific heat measurements (M. Putti, 2008): substitution of B by C leads from 2-band to 1-band behavior. This is also observed after high energy neutron irradiation (C. Tarantini, 2007): Generally, one can say that atomic disorder causes a gradual transition from 2-band to 1-band.

Disorder mechanism in the Nb₃Sn and in MgB₂ structures

The variation of T_c vs. neutron fluence (1 MeV neutrons) is very similar for Nb₃Sn and MgB₂. Both are highly ordered structures; in addition, the Fermi energy E_F is in both cases situated close to a maximum of N(E).

Hypothesis:

In both Nb₃Sn and MgB₂, high energy irradiation induces a lowering of the atomic order parameter, causing a similar decrease of T_c . How does a site exchange occur?

The Focusing Displacement Collision Sequences

In A15 type compounds, the Nb $\leftarrow \rightarrow$ Sn site exchange leading to higher disorder occurs along the <102> direction, at the end of the collision process.

In MgB_2 , no measurement of the degree of atomic ordering after irradiation is available yet. However, such a focusing direction in the lattice exists where Mg $\leftarrow \rightarrow$ B site exchanges are possible: the <243> (shown above) could act as a focusing collision sequence.

Very high critical fields in thin MgB₂ films

* Very high values of B_{c2} (> 60T) have been reported for MgB₂ thin films prepared by Hybrid physical-chemical vapor deposition (HPCVD):

X.X. Xi et al. Rep. Prog. Phys. 71,116501(2008), Y. Iwasa, D.C. Larbalestier, et al. IEEE Trans. Appl.

Supercond., **16**, 457(2006), **V. Ferrando** et al. Appl. Phys. Lett., **87**, 252509(2005), **C. Ferdeghini** et al. IEEE Trans. Appl. Supercond. **15**, 3234 (2005) and others.

Ferrando et al. (2005) have reported carbon alloyed MgB₂ HPCVD films

with $B_{c2} \sim 55T$ and $B_{irr} \sim 40T$ and high J_c values at high fields. These values have so far never been reproduced in bulk or filamentary MgB₂.

• The very high B_{c2} values of thin flms have been theoretically studied by Gurevich (2007), who recognized the 2-band structure as the main reason. There are still questions about the fundamental mechanism leading to these extreme values.

• The reasons for the **very high J**_c values in films are attributed to their particular microstructure, combining very small grains (10-20 nm) and possibly oxygen doping. Since they do not have an influence on filamentary MgB₂ conductors, the thin films results will not be further discussed in the present talk.

Anisotropy of B_{c2} in MgB₂

Anisotropy of B_{c2} in MgB₂: smaller than in HTS materials, but is still a limiting factor for J_c in conductors. Anisotropy is strongest in highly textured binary thin films, but is reduced in tapes. The addition of Carbon has a limiting effect on the anisotropy factor $k_s = l_{c-par}/l_{c-perp}$: Binary films Binary tapes C alloyed tapes C alloyed wires

In round C alloyed wires the anisotropy Factor is smallest, the measured values representing an average over all grain orientations in the filament: its value lies between the values for H//ab and H//c.

P. Kovac et al. J. Physics, **153** 012019(2009); **W. Hässler** et al. SuST **21**, 062001(2009).

The anisotropy factor k. increases with applied field.

Industrial production of MgB₂ multifilamentary wires

Columbus Superconductors, Genoa, Italy Hypertech Research Inc., Columbus, Ohio, USA

Laboratory production of long prototype wire lengths: OSU, Columbus, OH, USA NIMS, Tsukuba, Japan EEL, Bratislawa, Slowakia KIT, Karlsruhe (D) IEE, Beijing, China IFW, Dresden (D) University of Cambridge (GB) DPMC, Geneva, Switzerland

E CENÎVE

Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA

.....

Enhancement of J_c in MgB₂ wires

Intense work has been performed in the last years to improve the J_c and the J_e values (J_e is the «engineering» critical current density: the critical current is divided through the entire wire core section).

A review of a large number of other additives was published by E. Collings et al. (2008). The first successful way to add Carbon to MgB_2 was found by Dou et al. (2002) who added **SiC**, which was found to decompose during the reaction process, thus allowing the substitution of B by the free Carbon. Today, pure C is mostly added to MgB_2 wires.

Further progress was reached by enhancing the connectivity between grains. The importance of connectivity was first recognized by J. M. Rowell (2003). The mass density ratio inside the reacted MgB₂ filaments varies between 50% (*in situ* wires) to almost 100% (*second generation* wires, see later).

Finally, the fill factor inside the wire was recently raised to values well above 20%, thus extending the competitivity of MgB₂ wires.

Processing routes for multifilamentary MgB wires

All known processing routes follow a similar sequence:

A given initial powder configuration inside a metallic sheath.

- 1. After mechanical deformation by drawing, a monofilamentary wire is obtained.
- 2. After bundling, a multifilamentary configuration is obtained; deformation to final diameter.
- 3. Final heat treatment

The main difference between resides in the initial powder configuration.

The initial powder configuration

In contrast to «ex situ» processing, which starts with already formed MgB_2 powder, there are other routes which start with elemental powder mixtures: roughly, they can be summarized by

1st generation and 2nd generation wires.

The difference between the US and Japanese 2nd generation wires is small, but substantial.

Compared to the "ex situ" wires (presently, only binary wires are produced), the heat treatment conditions are markedly different, and so are the properties:

Mass density inside the MgB₂ filament (between 50 and ~ 100%) Grain size Fill factor Mechanical stability Critical current density, in particular at high fields (due to C alloying)

Cold Hydrostatic Pressure Densification

 Regardless of the crystal structure, an inherent problem for fabrication of powdermetallurgically produced wires due to voids between powder particles: Mass density inside filaments after deformation : well below 100%
 Mass density inside filaments after reaction: well below 100%.

Problem: How to introduce a hydrostatic pressure inside the filaments?

 Possibilities: 1) Reaction under HIP conditions Available pressures: p< 0.2 GPa little effect on J_c
 2) Cold hydrostatic pressure densification Available pressures: p < 5 GPa.

First experiments have shown that cold pressures > 1 GPa are necessary **R. Flükiger** et al. SuST **22**, 085002(2008) to get an enhancement of mass density inside MgB₂ filaments and thus a marked enhancement at J_c at 4.2 and 20K.

C') Latest developments in USA and in Japan

At Ohio State University (USA) and at NIMS (Japan): advanced developments, based on the IMD process.

In both cases, the reaction kinetics has been taken into account. Various improvements have been obtained:

enhancement of MgB₂ layer and thus of the fill factor (>20%)

enhancement of J_c.

The two new wire types are denominated:

IMD-PIT (NIMS): Internal Mg Diffusion/Powder-in-Tube and AIMI (OSU, Hypertech): Advanced Internal Mg Infiltration Both types of wires belong to the "second generation"

Both IMD-PIT and AIMI wires: J_c(layer) >10⁵ A/cm² at 4.2K/10T

Industrial 1G (in situ) and 2G(AIMI) MgB₂ wires

Inherent limitation of J_c in MgB₂ wires

Processing	Today, 1G	In 3years, 1G-2G	In 5 y, 2G
Temperature range	4-30K	4-30K	4-30K
Field range	6T-0T	8T-0T	8T-0T
Conductor current	4K-1T-1400A/mm2	4K-1T-2800A/mm2	4K-1T-2800A/mm2
density (Je)	4K-4T-400A/mm2	4K-4T-1400A/mm2	4K-4T-1400A/mm2
Based on	4K-6T-200A/mm2	4K-6T-800A/mm2	4K-6T-800A/mm2
temperature and	20K-0T-2000A/mm2	20K-0T-5000A/mm2	20K-0T-5000A/mm2
field on wire	20K-1T-600A/mm2	20K-1T-2000A/mm2	20K-1T-2000A/mm2
	20K-2T-320A/mm2	20K-2T-1200A/mm2	20K-2T-1200A/mm2
	20K-3T-120A/mm2	20K-3T-600A/mm2	20K-3T-600A/mm2
Conductor form	Round 0.25-2 mm	Can be custom size	Can be custom size
Wire length	6 – 10 km	40 – 60 km	80 km
Conductor shape	Round or rectangular		
Delivered selling	4K-1T-\$5/kAm	4K-1T-\$0.5-\$1.5/kAm	4K-1T-\$0.4/kAm
price range \$/kAm	4K-4T-\$16/kAm	4K-4T-\$1.5-4.5/kAm	4K-4T-\$1.3/kAm
Varies based on	4K-6T-\$30/kAm	4K-6T-\$3.0-9.0/kAm	4K-6T-\$2.5/kAm
diameter,	20K-1T- \$10/kAm	20K-1T-\$0 75-2 /kAm	20K-1T-\$0 70/kAm
temperature and			
held on wire	20K-2T- \$20/kAm	20K-2T-\$1.5-5/kAm	20K-2T-\$1.3/kAm
Some examples	and the second second second second	20K-3T-\$3 -10/kAm	20K-3T-\$2 5/kAm
For 1 mm round wire			
		Factor 5 - 8 less	Factor 20 less

Forecast: Potential Price/Performance of MgB₂ Wires

Today, the processing route for MgB_2 wires with the largest distribution is the "ex situ" technique, followed by the 1st generation or "in situ" wires. It may be noted that "ex situ" as well as "in situ" wires have a common feature: only one initial constituent is a powder.

 MgB_2 wires of the 2nd generation are still under development. Inherent difficulty in the development of 2nd generation wires (AIMI or IMD-PIT): **two concentric powder constituents** (see schematic representation at page 13). To produce long lengths of wire with such a configuration, particular deformation precedures had to be developed. The future effort will be concentrated in extending these lengths to > 40 km and later, to 80 km. The transition to longer lengths will require the development of extended facilities, but will also mean a lowering of production costs to an unprecedented level (see the above Table).

For applications at <1 T, e.g. in cables, the costs will be < 1 \$/kAm (10 \$/kAm today), while for MRI magnets (~ 3 T), the expected costs are as low as 2.5 \$/kAm.

The search for artificial pinning in MgB₂

S.K. Chen et al. (2006) published an enhancement of J_c of MgB₂ bulk samples at low magnetic fields after mixing Dy_2O_3 powders before the final reaction. The size of the some Dy_2O_3 powders, a few μ m, was reduced to several nm during reaction. The result was interpreted as being the effect of artificial pinning.

G.Z. Li et al (2014) introduced Dy_2O_3 powders of the same initial size in AIMI MgB₂ wires and obtained a slightly different result:

- 1. No enhancement of $J_{\rm c}$ at low fields at 4.2K
- 2. Enhancement of J_c at 4.2/10T.
- 3. A surprising enhancement of J_c at T = 20 and 25K.

This would mean that a solenoid at 20K could enhance its produced field by 0.9 T. The pinning mechanism is not clear yet, but the effect is worthwhile to be further investigated.

Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA

A. Magnetic Resonance Imaging (MRI)

Persistent mode operation Relaxation rate comparable to that of Nb₃Sn

C. Senatore et al., Adv. Cryo. Eng., 2005

MgB₂ joint development for MRI: Siemens (D), G.E., Hitachi (J),.....

Open MRI system (0.5T)					
Material	Area (mm ²)	%	R&D products in 2006: 14 filaments		
MgB ₂	0.23	10	250x0 65 mm2		
Ni	1.55	65			
Iron	0.23	10	Starting from 2010:		
Copper	0.36	15	12 filomente		
Total	2.37	100	· izznaments		
Dimension	3.5 x 0.65		 Improved tabrication process 		
Columbus Columbus Massa Paramed Paramed	iki system "		Sen		
Main Magnet Parameters		rs -			
Nominal Field		0.5 T	вп		
Peak Field on the Cor	nductor	1.6 T	* 26 full magnet systems in activity.		
Nominal MagnetCur	rent	90 A	in EU and USA. Production goes on		

Open MRI Systems

Soon after the discovery of superconductivity in MgB₂, the team at the University of Genova in Italy, together with the newly founded company Columbus (also in Genova) started a strong development program for taking profit of the particular properties of this material.

In the meantime, a collaboration between Columbus, ASG and Paramed (all Italy) have succeeded in constructing Open MRI systems. Today largest application for MgB₂ wires. The production at a steady production rate has led to a reduction of the MgB₂ production costs.

Courtesy of prof. Fallone, Cross Cancer Istitute, Edmonton

Cinematic Imaging

Courtesy of A. Phillips, Centre for Hip Health and Mobility

State University. P	roject Funded by	the State of Ohio.	, ,
Based	on 2 nd generatio	n MgB ₂ wire perform	ance
Strength	1.5 T	Stored Energy (MJ)	3.74
Type of Superconductor	MgB ₂ design	Maximum Hoop Stress (MPa)	76.10
Operating Temperature (K)	10 K	Peak Magnetic Field (T)	5.40 T
Length (m)	1.40	Density(A/mm ²)	175.00
Inner Diameter (m)	1.00	Amp-length (kA- km)	18.00
Outer Diameter (m)	1.97		/

MgB₂ Coil, 100 m of WIC MgB₂ Conductor

HTR: MgB₂ strand, Wire-in-channel Conductor

HTR: Coil wound, coil epoxy impregnated by HTR

OSU: Coil with > 30 voltage taps, > 18 thermocouples, , other sensors

OSU: Cool down and Test

Single Layer, 34-Turn (~100m) WIC MgB₂ Coil Courtesy: M. Sumption, OSU Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA

	B. High Current MgB ₂ cables			
	Successful prototypes:			
	A) The LINK cable for LHC Upgrade: 20 kA at 24K CERN, Geneva			
	B) Energy Transfer by MgB ₂ cables with LH2 cooling Russian Scientific R&D Cable Institute, Moscow			
	R & D Projects			
	Energy Transfer by Underground MgB ₂ cables with LHe (or LH ₂) cooling: * IASS-CER * Nexans			
6	Di unvitsni Di centve Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA			

In addition to MRI magnets, the most promising applications for MgB_2 wires are Cables and Motors.

MgB₂ cables

The inherent properties of MgB₂ render it particularly efficient for low field applications, at temperatures **between 4.2 and 25K**.

This opens the possibilities of cooling by He vapour or even by liquid hydrogen. In view of the foreseeable shortage of liquid He in the next decade, this enhances the chances of MgB₂ applications.

There have been quite recently strong improvements of the current capability of MgB_2 cables. A series of cables are presented in the following.

LINK Cable for LHC-Hi-Luminosity Magnets CERN)

B) Hybrid Power Transmission Line with LH2 and MgB₂ based Superconducting Cable (in Russia)

Liquid Hydrogen:

- * Much more cooling efficient than LHe
- * Much lower costs than LHe
- * Hydrogen is abundant, in contrast to LHe

Columbus

<u>Basic tape:</u> MgB₂,3.65mm x0.65 mm Fe barrier, Ni matrix, Cu stabilizer (Columbus Superconductors)

V.S. Vysotzky et al., IEEE Trans. Appl. Supercond. **23** (2013)

Cable, First stage: Five tapes, two layers, total length 10 m, *Cu stabilization*: ~90 mm² for each layer, joints on one end.

Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA

V.V. Kostyuk et al., Techn. Phys. Lett. 38,279(2012)

Present project: Uses LH2 production plant of the KB Khimavtomatika, Voronezh city (Ru): liquid propellant for rocket engines

DOE sponsored project for developing 2G MgB₂ for DC Cables

A MgB₂ cable was successfully fabricated with 2nd generation MgB₂ multifilament conductor.

The cable consisted of three reacted strands, each sized to 0.83 mm. Twist pitch of 100 mm.

Cable made using reacted strands

I_c > 1350 A at ~23.5K

(Ic limited by test equipment)

Flükiger, ASC, 10-15.8.14, Charlotte, NC, USA

C) Applications of ultra-thin MgB₂ wires

- 1. Sensors for LH2 Level
- 2. Current leads in satellites (NASA)
- 3. Finer filament MgB₂ wires for s.c. stators in all-electric aircraft (NASA)

Particular Benefits of MgB ₂ :	* low mass density
	* available in diameters < 0.1 mm

UNIVERSITÉ DE GENÈVE

Sonja I. Schlachter Institute for Technical Physics

D) Development of special magnets

Liquid Hydrogen Transfer Pump System with MgB₂ Wires

Pump system for liquid hydrogen transfer: MgB₂ motor and MgB₂ level sensors

MgB₂ level sensors were used * to detect the liquid level and * to control the MgB₂ motor.

A maximum flow rate of 6.5 liters per minute is obtained at 1800 rpm. Transfers of the liquid hydrogen: were successfully carried out

Pump system K. Kajikawa et al.: Cryogenics 52,615(2012)

10 MW offshore wind turbine generator - Suprapower

All Cryogenic 10 MW Superconducting Rotor and Stator

Conceptual Design of <u>all cryogenic</u> MgB₂ 10 MW with superconducting rotor and stator operating at 15-20K using projected 2^{nd} generation MgB₂ wire performance.

Paper by Swarn S. Kalsi http://dx.doi.org/10.1109/TASC.2013.229125

Estimated total weight for 10 MW system is 50 metric tons. Estimated cost in for 12 or more per year is \$3.2 million. See ASC paper for details.

G) MgB₂ persistent mode magnets

Goal: Levitation for transportation

MgB₂ bulk permanent magnets, 3 - 5 T

Fabrication by sintering Mg and B powders, at p = 0 or p > 1 GPa Reaction: 850°C/3 days (A. Yamamoto, University of Tokyo, J) Present state: Pellets, up to 100 mm diameter,

Uniform and very stable fields of 3 - 5 T at 10 - 20K

Thickness dependence of trapped field

Trapped field systematically decreases for thinner samples. (2.7 T @10 mm → 1.5 T @1 mm) Courtesy of A. Yamamoto

THE UNIVERSITY OF TOKYO

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Plenary Presentation 3PLA-02 given at ASC 2014, Charlotte, August 10 – 15, 2014

SR2S: Space Radiation Superconducting Shield

Acknowledgements

Many thanks to the colleagues who contributed to the present talk: G. Grasso, M. Tropeano, Columbus, Genova (I) M. Tomsic, M. Rindfleisch, HyperTech, Columbus, OH (USA) M. Sumption, M. Susner, Ohio State University, Columbus, Ohio, USA H. Kumakura, NIMS, Tsukuba (J) S. Schlachter, W. Goldacker, KIT, Karlsruhe (D) G. Giunchi, Edison (It) Amalia Ballarino, CERN, TE-MSC, Geneva (CH) T. Hamajima, Mayekawa, Mfg. Co, Ltd. (J) A. Yamamoto, University of Tokyo, (J) V.S. Vysotzky, Russian R&D Cable, Moscow (Ru) M.S.A. Hossain, UoW Wollongong, (Australia) Tabea Arndt, M.P. Oomen, Siemens, Erlangen (D) **A.B. Abrahamsen**, Mat. Res. Div., RisΦ, (Denmark) Chiara Tarantini, NHMFL, Tallahassee, FA (USA) K. Kajikawa, Kyushu University, Fukuoka (J) A. Morawski, Institute of High Pressure Physics, Warsaw, Poland H. Ohsaki, The University of Tokyo, Tokyo (J)

