IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Plenary presentation M1PL given at CEC-ICMC 2015, Tucson, USA, June 28 – July 2, 2015.

Bulk Superconducting Materials – Ready for Applications ?

Dr J. H Durrell

Post Conference Annotated Version – July 2015

Department of Engineering – University of Cambridge

 \bigcirc

Acknowledgements

- Group Leader: Prof. David Cardwell
- SRA: Dr Yunhua Shi; RAs: Dr Devendra Kumar, Dr Difan Zhou
- Professor Archie Campbell (Emeritus)
- Royal Academy of Engineering Fellow: Dr Mark Ainslie
- PhD Students: Wei Zhai, Jin Zou, Di Hu, Kysen Palmer, Wen Zhao, Jordan Rush
- Technical Officer: Tony Dennis
- Technician: Danny Huang
- Funding: EPSRC, Boeing, KACST
- Facilities: NHMFL

Acknowledgements

Eric Hellstrom, Jan Jaroszynski, David Larbalestier – FSU/NHMFL

John Hull and Mike Strasik – The Boeing Company

Susannah Speller, Chris Grovenor – University of Oxford

A. Yamamoto – University of Tokyo

M. Izumi – TUMSAT

A. Patel – University of Cambridge

Outline

- Basics
- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

Outline

Basics

- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

Superconductivity

 \mathcal{O}

- Discovered in Mercury by Kammerling Onnes shortly after he had succeeded in liquefying Helium
- Sharp decrease of resistivity to zero at a critical temperature T_c.
- Small magnetic fields destroyed effect limited practical application

Useful Superconductors

- Fortunately in a few elements and many alloys and compounds superconductivity and magnetism can co-exist.
- This occurs because the sign of the free energy at the Normal-Superconducting boundary changes in "Type-II" superconductors.
- Superconductivity can then persist to several Tesla

Flux lines in NbSe₂, University of Oslo

See http://www.mn.uio.no/fysikk/ english/research/groups/amks/ superconductivity/sv/ for more

Families of Superconductors

 \mathcal{D}

Forms of superconductor

• Bulk

4 cm

High field permanent magnets

 \mathcal{D}

Self stabilized levitation

• Wires and Tapes

Power cables and high field solenoids (e.g. MRI)

• Thin Films

High speed electronics, GHz frequency generators Single Photon Detectors

Limitations of Permanent Magnets

 Practical fields generated by permanent magnets limited to less than 2 T by the number of Bohr magnetons of iron.

• This is a fundamental limitation and cannot be increased

by processing.

 $\mu_{\rm B}$ = 9.27 x 10⁻²⁴ Am²

Magnetisation independent of sample volume

Bulk Superconductors

• Field generated by induced macroscopic currents rather than spins.

Magnetic moment =
$$\int_{r=0}^{R} iA$$

- The bigger the current loop, the bigger its magnetic moment
- Magnetisation *increases* with sample volume

And.....

- Changing the flux profile would require flux to move, hence a bulk resists changes in an external field.
- This is, strictly speaking, not the Meissner effect

 the complete
 expulsion of flux.
- So in addition to acting as a high field magnets bulks offer stable levitation (and suspension!)

 \mathcal{O}

A (Simple) Superconducting Bearing

If video not embedded see http://bulk-sucon.eng.cam.ac.uk/

Outline

- Basics
- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

Granularity is a problem!

- Simple sintering of (RE)BCO powder in bulks does not result in very good materials
- Early attempts at bulk material were... disappointing

Sintered YBCO

Grain Boundaries – An inconvenient truth.....

Grain Boundaries must be avoided in REBCO materials, current carrying capacity drops exponentially with increasing mis-orientation

Melt Grown (RE)BCO Bulk Superconductors

 \mathcal{O}

 $\begin{array}{rcl} YBa_{2}Cu_{3}O_{7-\delta} &+& Y_{2}BaCuO_{5} \\ +& Pt \rightarrow & Y_{2}BaCuO_{5} &+& L \end{array}$

- Avoid grain boundaries using a seeded peritectic growth process
- Use large excess of Y-211 (typically 40%)
- Sample require a subsequent anneal to optimise O₂ content

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Plenary presentation M1PL given at CEC-ICMC 2015, Tucson, USA, June 28 – July 2, 2015.

The (RE)BCO family		$\overline{\mathcal{O}}$
YBa ₂ Cu ₃ O _{7-δ}	YBCO	92 K
GdBa ₂ Cu ₃ O _{7-δ}	GdBCO	92 K
Sm _{1+x} Ba _{2-x} Cu ₃ O _{7-δ}	SmBCO	92 K
Nd _{1+x} Ba _{2-x} Cu ₃ O _{7-δ}	NdBCO	94 K

- Several different (RE)BCO materials can be used.
- Have differing melting points, need higher melting point seed

Outline

- Basics
- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

MgB₂

- Metallic nature, T_c 39 K
- Lightweight (2.624 g/cc), inexpensive
- Low anisotropy
- Large coherence length

Why MgB2?

- No GB problem

 simple to
 produce in large
 sizes
- Relatively cheap raw materials, no rare earths

T. Nakashima, Ph.D. Thesis (2008)

Y. Shimada et al., IEEE-TAS 25, 6801105 (2015)

Textured, single domain Pinning by intragrain defects

Randomly oriented polycrystal Pinning by grain boundaries

Slide courtesy A. Yamamoto

Oxford MgB₂ measured in Cambridge

- Density of final sample was 91% of theoretical maximum (taking into account MgO). 25mm diameter.
- 'Ex-situ' Uniaxial Hot Press
- Trapped 3T measured in stack

load applied from above only

Durrell et al. Supercond. Sci. Technol. 25 (2012) 112002

State of the Art now ~ 5 T

UNIVERSITY OF CAMBRIDGE

- Yamamoto and colleagues report
 5 T at 7 K
- Samples
 produced using
 sintering only –
 no pressure
- Fuchs et. al report 5.4 T at 12 K

See Yamamoto et al. APL 105, 032601 (2014) Fuchs et al. SUST 2, 122002 (2013)

Outline

- Basics
- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

- Pinning enhancement
- New Seeding Techniques
- Multi Seeding
- Reinforcement for High Fields
- Composite Bulks from Tape

Pinning Enhancement

- The Y-211 particles that are essentially part of the production process of bulks do give good pinning
- Nonetheless critical current in bulks is at least an order of magnitude less than coated conductors
- Clear scope for improvement in performance

Novel pinning centres – the 2411 phase

 $(RE)_2Ba_4CuMO_v$ RE = Sm, Gd, Nd, Y

M = Nb, Zr, Hf, W, Bi, Ag, U ...etc.

• All paramagnetic and non-superconducting down to 5 K

Flux pinning - YBCO containing Y-2411 (Nb)

 \bigcirc

- Houston group have shown that the combination of (Pt_{0.4}U_{0.6})/YBa₂O₆ pinning centres and subsequent neutron induced of the U can achieve spectacular pinning - 2 T trapped field at 77K
- Sawh *et al.* have demonstrated a batch of 60 samples which reliably exhibit such high performance

UNIVERSITY OF

AMBRIDGE

Sawh et al. Supercond. Sci. Technol. 26 (2013) 105014

Advanced Seeds

RE in (RE)Ba ₂ Cu ₃ O ₇	Mg- NdBCO	La	Nd	Sm	Eu	Gd	Dy	Но	Y	Er	Yb
Melting point (±5 °C)	1088	1068	1068	1054	1046	1030	1010	1005	1005	990	960

Requirements;

- Higher melting point
- Chemical compatibility
- Structural compatibility

Generic seeds – higher melting point

• Mg-doped NdBCO has at least 15 °C higher melting point than any other (RE)BCO.

- The TSMG growth process is slow
- Ability to grow large samples quickly would be advantageous
- One approach is to use multiple nucleation points with seeds that are aligned – avoiding grain boundary problems

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Plenary presentation M1PL given at CEC-ICMC 2015, Tucson, USA, June 28 – July 2, 2015.

Multi Seeded Samples

0.74 T

 \mathcal{O}

#265 0.68 T

Growth sector between seeds

- Sub-grain morphology indicates that growth occurs first from seed 1.
- Where the growth front from seed 1 meets the growth front from seed 2, the subgrains stop abruptly.
- At interface there is a build up in Y-211 particles, as seen in EDX maps.

Seed 2

0°

15°

SEM images of seed interface

Multi-seeding – oriented seed growth in YBCO

- J_C is important but not sufficient
- At ~17T internal stresses are ~ 90 MPa
- Stress scales as the square of field $\sim 0.282 \text{ B}^2$
- This leads to practical maximum of 7-9T in unreinforced samples as tensile strength is < 50 MPa
- Very variable performance worst crack problem

• During charging the maximum tensile stress increases as the square of the field.

UNIVERSITY OF CAMBRIDGE

40

Previous High Field Measurements

Tomita et al used CF/Epoxy and a sample soaked in woods metal -17.2 T

Tomita et al., Nature 421, 517-520 (2003)

• Fuchs et al. used a SS reinforcement band. - 15 T

Appl. Phys. Lett. 76, 2107 (2000)

Record trapped fields in (RE)BCO at Cambridge

Collaborative study with NHFML and Boeing

Record trapped fields in (RE)BCO at Cambridge

- 26 K
- Energy density > 25 MJ/m³
- Equivalent to 12% of energy density of TNT!

Superconductor Science and Technology, 27, 082001, 2014

Pseudo-Bulks – Stacked Tapes

65 µm ~1 µm | µm | 5 µm -10 µm

Baskys A et al. 2015, *IEEE Trans. Appl.* Supercond., **25** 6600304

Main advantages are

- Flexibility of geometry
- Consistency of superconducting properties of 2G HTS tape

Fabrication

- Simple cutting and stacking
- Can use solder plated tape to create self-supporting slabs/blocks by compression and heating
- Can create large slabs by overlapping layers

Trapped field results

- Stacks respond very well to pulsed field magnetization
- Current records for stacks set using commercial 12mm tape
- Limited by tape width and engineering Jc
- Higher fields expected with new tape

Trapped field measurements 12mm square stacks

 \bigcirc

Patel A et al. 2013, Applied Physics Letters, 102 102601

Slide courtesy Anup Patel – University of Cambridge

Potential Applications of Stacked Tapes

45

Outline

- Basics
- Practical Bulk Materials
 - (RE)BCO
 - MgB₂
- Advanced Materials
- Applications

Applications

- Two main classes:
 - High field "permanent" magnet
 - Self stabilised levitation
- Challenges to practical applications are:
 - Cooling
 - Charging

Pulse charging system

 \mathcal{O}

Cryotel Cryo-Cooler for Bulk Application

Superconducting Flywheel Bearings

- Flywheels offer unparalleled Specific Power Density ~5 kW/kg
- Specific Energy Density is slightly less than Li-Ion ~ 0.2 kWh/kg.
 Compare Petrol at 14 kWh/kg
- Key advantage is ability to discharge quickly (power).

UNIVERSITY OF CAMBRIDGE

 \mathcal{O}

http://www.sandia.gov/ess/docs/pr_conferences/2008/johnson_boeing.pdf

Applications - Superconducting Bearings

 Primary source of loss is friction. Superconducting bearings significantly extend useful energy storage time.

UNIVERSITY OF

AMBRIDGE

http://www.sandia.gov/ess/docs/pr_conferences/2008/johnson_boeing.pdf

 \mathcal{O}

\bigcirc

Portable High Fields – for many applications

- Modern cryocoolers allow bulks to be charged in a solenoid and then moved around in a portable system.
- Hitachi have demonstrated such a system with an eye on medical applications

Images from Saho et al. Physica C 469, 15–20, (2009)

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Plenary presentation M1PL given at CEC-ICMC 2015, Tucson, USA, June 28 – July 2, 2015.

Portable High Fields

- Numerous potential applications for this kind of technology
- And you can part water ! "Moses Effect"

Image from Saho et al. Physica C 469, 15–20, (2009)

Bulk HTS Applications – Motors

- Considerable work on superconducting motors using tape
- Greatly improved power to weight ratio
- Bulks can be used to substitute permanent magnets

Image – AMSC website

Bulk HTS Applications – Motors

- Axial gap, trapped fluxtype motor
- Advantages:
 - Higher torque/power density
 - Compact 'pancake' shape
 - Better heat removal
 - Adjustable air gap
 - Multi-stage machines possible

Axial gap, trapped-flux motor

Slide courtesy Mark Ainslie - Cambridge

Bulk HTS Axial Flux Motor

Uses stator coils to magnetise HTS bulks with pulsed field

- Cooled using liquid nitrogen
- Dual purpose: magnetising coils, then armature winding
- Closed cycle neon thermosyphon system
 - Includes cryo-rotary joint
 - Cryogen from static condenser to rotating rotor plate with bulk HTS
 - Allows cooling of bulks HTS down to below 40 K

Schematic diagram of TUMSAT prototype motor

Slide courtesy M. Izumi, TUMSAT

Maglev

- Evico/ IfW Dresden MagLev demonstrator using bulk superconductors.
- Bulks provide a simple levitation system as compare to conventional or superconducting coils

See: IFW Dresden / evico.de

- Drug targeting
- Compact MRI/NMR
- High fields for non-destructive testing (EMAT)
- Spacecraft docking
- Generators
- Process Transport

- Yes !
- Bearing/Levitation applications straightforward as cooling technology improves should become very competitive.
- "Permanent" magnet applications still require a effective route to magnetisation – exciting developments in pulse magnetisation are happening!

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2015. Plenary presentation M1PL given at CEC-ICMC 2015, Tucson, USA, June 28 – July 2, 2015.

Visit Cambridge!

