

1

#### **Coherent Quantum Phase Slip:**

Exact quantum dual to Josephson Tunneling (Coulomb blockade is a "partial" dual)

Degree of freedom in superconductor: Phase and Charge



Nature doi: 10.1038/nature 10930, 2012





#### **Duality to the Josephson Effect**



 $\mathsf{Z} \leftrightarrow \mathsf{Y} \quad \mathsf{L} \leftrightarrow \mathsf{C} \quad \Phi_0 \leftrightarrow 2\mathsf{e}$ 

#### The CQPS is completely dual to the Josephson effect

#### Phase-slip in superconducting nanowires

#### Thermal phase slip:





#### Phase-slip in superconducting nanowires

#### Coherent Quantum Phase-Slip

#### **CQPS** Qubit:



## Superconducting qubits

> Quantized charge: 2e:  $|N\rangle$ ,  $|N+1\rangle$ > Quantized flux:  $\Phi_0$ :  $|\downarrow\rangle$ ,  $|\uparrow\rangle$ 

Charging energy:  $E_c = 4e^2/C$ Josephson (tunneling) energy:  $E_J$ Magnetic energy:  $E_L = \Phi_0^2/L$ Phase-slip energy:  $E_S$ 

Necessary condition:  $E_{qubit} \gg kT$ 

Charge qubit: E<sub>c</sub> >> E<sub>J</sub>
Flux qubits: E<sub>J</sub> >> E<sub>c</sub>

> Phase-slip qubit:  $E_L >> E_S$ 









### Transmission at the resonator resonance under qubit excitation

Transmission phase modulation



#### **Two-level spectroscopy**



The dashed line is a fit to the energy splitting with  $E_s/h = 4.9$  GHz,  $I_p = 24$  nA.

#### Spectroscopy of the system in a wide ranges



## CQPS in other materials

Requirements:  $R_{\Box} > 1 \ k\Omega$ , suppressed Tc

## ALD grown TiN films, R<sub>□</sub> ~ 3 kΩ (TU Delft, Klapwijk's group) Spattered NbN films, R<sub>□</sub> ~ 2 kΩ (MSPU, Goltsman's group)





## NbN film qubits





## NbN film qubits: width dependence



## TiN qubits

In MW measurements  $T_c \approx 0.8$  K L  $\approx 1.6$  nH/sq

Transmission through 1.5 mm Length coplanar resonator





## NbN qubits: Dynamics





#### 6.30 6.30 6.30 6.25-6.25 6.25 6.20-6.20 6.20-(ZHO) ↓ 6.10 ( ₽) 9 40 5 6.15 (͡ᠯ 6.15-IJ) J 6.10-6.15-6.05-6.05-6.05 6.00-6.00 6.00 10 20 30 40 50 10 20 50 30 20 30 40 10 40 Pulse length (ns) Pulse length (ns) Pulse length (ns)

#### Quantum oscillations

50



### QUANTUM CURRENT STANDARD: Electron Pump I = ef

#### **Quantum Phase Slip**



J.E. Mooij and Yu. V. Nazarov et al., Nature Phys. 2, 169 (2006) O. V. Astafiev et al., Nature 484, 355 (2012)

#### Optically driven electron pump



L. Nevou et al., Nature Phys. 7, 423 (2011)

#### Nanomechanical single-electron shuttle



Daniel R. Koenig et al., Nature Nano. 3, 482 (2008)

#### Single electron transistor



Keller et al., APL 69, 1804 (1996)

#### Cooper pair sluice



Niskanen et al., PRL 91 177003 (2003)

#### Surface acoustic wave



J. Ebbecke et al., APL 84, 4319 (2004)



10 – 100pA with 10<sup>-7</sup>

# NISIN Turnstile

Pekola et al., Nature Phys. 4, 120 (2007)

Tunable Barrier Pumping

M.D. Blumenthal et al., Nature Phys. 3, 343 (2007)

#### Nonlocal electron hole turnstile



F. Battista and Samuelsson, PRB 125324 (2011).









Coherent Quantum Phase Slip has been experimentally demonstrated

Phase-slip qubit has been realized in thin highly disordered films of InO<sub>x</sub>, NbN and TiN

> DC characterization is underway

M.C. Escher Angels and devils (detail), 1941

# Thank you for your attention

## Congratulations Aóno-san/