

2th EUropean Conference on Applied Superconductivity

6th - 10th September 2015

Lyon - France

MgB₂ and the Iron-based superconductors

Marina Putti

UNIVERSITÀ DEGLI STUDI DI GENOVA

University of Genova and CNR-SPIN

Magnesium diboride

NATURE VOL 410 1 MARCH 2001

Superconductivity at 39 K in magnesium diboride

Jun Nagamatsu*, Norimasa Nakagawa*, Takahiro Muranaka*, Yuji Zenitani* & Jun Akimitsu*†

* Department of Physics, Aoyama-Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157-8572, Japan * CPEST Istan Science and Technology Conternation, Keynoguchi, Science 332

† CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan

Strong covalent bonds between the boron atoms.

Coupling of electron with the optical vibration mode of boron atoms (mode E_{2g}).

T_c = 39 K, close to the maximum value predicted by BCS theory

T_c is amplified (by a factor 2) by the occurnce of two decoupled bands

Role of disorder

In a two-band s/c interband scattering mixes strong σ -pairs with weak π -pairs and causes pair breaking.

A.A.Golubov and I.I.Mazin, PRB 55 (1977)

Upper critical field

Jc of thin films

Jc of thin films

Nanometer-sized columnar-grain structure can produce J_c (B) exceeding 10^{6} A/cm²

PLD + post-annealing process

A. Matsumoto: APEX 1, 021702 (2008)

 J_c enhancements in fields up to 26 T above Nb₃Sn performance in nanostractured thin films

In thin films Jc is enhanced by grain boundary pinning

\Rightarrow High T_c, B_{c2} and J_c

No evidence of "weak link"

Fast development of Powder in Tube (PIT) technique

D.C.Larbalestier et al., Nature 410, 186 (2001)

Coherence length ξ^{\sim} 10 nm

How to enhance pinning strength in polycrystals

Incresing H_{c2} with C doping Introducing pinning centers with nanoparticle addiction

Carbon in elemental form (microspheres, nanotubes, nanodiamond, graphene) C-containing compounds such as SiC, TiC, B_4C , Organic compounds: -malic acid, toluene, benzene, naphthalene, thiophene, pyrene

V Braccini, INFM, Italy E W Collings, The Ohio State University, US S X Dou, University of University of Wollongong, Australia R Flukiger, DPMC, University of Geneve; Switzerland W Goldaker, KIT, Germany H Kumakura, NIMS, Japan

Y Ma, et al Chinese Academy of Sciences, China

Despite many attempts at nanoparticle additions, the principal pinning defects in MgB₂ are grain boundaries.

Fine grains in C additioned MgB₂

....

Critical current density

Engineering critical current

Wire manufacturing companies

Ready for industrial production 2 different manufacturing process ex-situ and in-situ technique

Interested in commercial production of wires or wires+magnet

*Early stage New York based company, granted as SME partner by UK for R&D activities on MgB*₂ They plan to start commercial production in early 2014.

MgB₂ wires for Cryo-free MRI Summer 2015 for MRI magnet 1.5T-3T magnet

Interested in the MgB₂ technology

1000 m of MgB2 wire already demonstrated in collaboration with IFW Dresden HITACHI

Patents on MgB2 wires Several R&D activities

Columbus

Western Superconducting Technologies Co., Ltd.

Courtesy of

MgB₂ on the market: MRI application

First commercial systems using MgB₂ installed in hospital in EU and North America

Operating T=20K

26 magnet systems produced so far

Courtesy of Superconductors

This demonstrates that 14th years since its discovery MgB₂ is a reality, but it needs a breakthrough to become a high field conductor

Iron based superconductors (IBS)

IBS families

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Nominal F content x

0

0

23

S Onari eta I., PRL 103, 177001 (2009)]

In case of s ± wave pairing a rapid suppression of Tc with impurities has been predicted

Superconductivity in IBS is quite robust agains disorder

T Katase et al., PRB 85, 140516(R) (2012)

Upper critical Fields

Superconducting parameters

	1111	122	11	YBCO	MgB ₂
Т _с [К]	55	38	16	93	39
B _{c2} (0) [T]	>50	60	55	>50	20-30
ξ _{ab} [nm]	2.5	3	1.5	2.2	10
$\gamma_{ m H}$	5	2	2-3	4-14	3-5
λ _{ab} (nm)	200	200	490	180	50-100
Ginzburg number G _i	4·10 ⁻⁴	2·10 -5	1.10-3	>10-3	<10 ⁻⁵
pairing	Not BCS	Not BCS	Not BCS	Not BCS	BCS

Several similarities with HTS :

High H_{c2}, small coherence length, unconventional pairing but, *lower anisotropy*

Critical current of thin films

V. Braccini, APL 103, 172601 (2013) Iida , Sci. Rep. 3:2139 (2013) Tarantini et al., Sci. Rep. 4, (2014). Sato et al., Applied Physics Letters **104**, 182603 (2014);

Pinning Force

Kurth et al., EUCAS 2015 Iida , Sci. Rep. 3:2139 (2013) Tarantini et al., Sci. Rep. 4, (2014). Sato et al., Applied Physics Letters **104**, 182603 (2014) Si, W. et al. Nat. Commun. 4:1347 (2013).

Dependence of Jc on the misaglineament angle

IBS Advantageous GB over HTS

Y. Ma, Physica C 516 (2015) 17-26

Engineering critical current

36

Sulfur hydride systems-brief story

Always Hydrogen has been the best candidate **for room temperature superconductivity** but it need extremely high pressure to become **metallic**.

1) Improvment of diamond anvil cells (DAC) which today allows to reach 600 Gpa exceeding the pressure in the Earth's inner core (360 GPa).

Several new elements superconducting under pressure discovered in the last 15 years: Sulfur (17 K), Oxygen 0.6 K), Iron (1.2 K), Boron (11 K), Lithium (20 K), Europium (2.5 K). Dense hydrogen has been made conductive at around 300 Gpa.

2) Discovery of MgB₂ which clarifies that high T_c superconductivity is promoted by covalent bonds which assure strong electron–phonon coupling.

These conditions can be fulfilled for covalent compounds dominated by hydrogen N.W. Ashcroft (Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? *Phys. Rev. Lett.* 92, 187002 (2004).

Ashcroft's idea was supported in numerous calculations predicting high values of T_c for many hydrides. So far only Tc ~17 K has been observed experimentally in silane under pressure.

The discovery of superconductivity **190 K in H₂S** has been posted on <u>arXiv.org</u> in December 2014 by the Eremet's group. **They have done the giant leap**.

Conventional superconductivity at 203 Kelvin at high pressure in the sulfur hydride A.P. Drozdov, M.I. Eremets I. A. Troyan, V. Ksenofontov, S. I. Shylin

A.P. Drozdov, M.I. Eremets I. A. Troyan, V. Ksenofontov, S. I. Shylin Nature published 17 August 2015, doi: 10.138/Nature 14964

 H_2S : relatively easy to handle and predicted to transform to a metal and a superconductorat a low pressure P<100 GPa with a high T_c <80 K</td>Li et al, J. Chem. Phys. 140, 174712 (2014).

Further investigations has indicated that at experimentally relevant pressures H_2S is unstable, decomposing into H_3S and S. PRB 91, 060511(R) (2015)].

Superconducting parameters

	H₃S	IBS-122	YBCO	MgB ₂
Т _с [К]	200	38	93	39
B _{c2} (0) [T]	70	60	>50	20-30
ξ [nm]	2.5	3	2.2	10
B _{c1} (0) [mT]	30	40	20	100
λ _{ab} (nm)	125	200	180	50-100
Ginzburg number G _i	10-3	2·10 -5	>10 ⁻³	<10 ⁻⁵
pairing	BCS	Not BCS	Not BCS	BCS

Conclusion

Another step towards achieving superconductivity at room temperature has been done.

The myth that BCS superconductors can not be a high temperature superconductor has been debunked.

There are many hydrogen-containing materials with strong covalent bonding (such as organics) but typically they are insulators.

In principle, they could be tuned to a metallic state by doping or gating. High power available ab-initio calculation method could facilitate exploration for the desired High Tc materials.

Many thanks to all the colleagues and friends who helped me in the present talk

E. Bellingeri, C. Ferdeghini, A. Malagoli, CNR-SPIN (I) D.Larbalestier, C. Tarantini, E. Hellstrom, NHMFL, Tallahassee, FA (US) G. Grasso, D. Nardelli, M. Tropeano, Columbus, Genova (I) R. Flukiger, CERN and University of Geneve (S) M. Eisterer, University of Wien (A) H. Kumakura, NIMS, Tsukuba (J) Y. Ma, CAS, Beijing University (C) K. lida, University of Nagoja (J) F. Kurth, IFW, (G) J-I Shimojama, Aoyama Gakuin University (J) G. Giunchi, Edison (It) A. Yamamoto, Tokyo University of Agricolture and Technology (J) X.X.Xi Philadelphia University, (US) A. Gurevich, Old Dominion University (US)

Special thanks to Ilaria Pallecchi

2th EUropean Conference on Applied Superconductivity

6th - 10th September 2015

Lyon - France

Thank you for your attention