

Nanocomposite Coated Conductors Towards optimal vortex pinning for high field applications

Institut de Ciència de Materials de Barcelona, ICMAB- CSIC, Bellaterra, Catalonia, Spain

Acknowledgments

ICMAB-CSIC: X. Obradors, A. Palau, S. Ricart, M. Coll, J. Gázquez, E. Bartolomé, X. Granados, C. Pop, M. Tristany, P. Cayado, V. Rouco, R. Guzman, F. Vallès, B. Mundet, P. Garcés, H. Chen, L. Soler, B. Villarejo EUROTAPES: J. Driscoll, R. Hühne, P. Pahlke, B. Holzapfel, J. Hänisch. G.Celentano, F. Rizzo, I. Van Driessche, K. Keukeleere, G. Van Tendeloo, A. Meledin, M. Eisterer, M. Lao **Bruker:** A. Usoskin D-Nano: M. Bäcker Theva: M. Bauer, W. Pruseit **Oxolutia:** A. Calleja **CERN: L. Bottura** SuperOx: A. Molodyk University of Houston: V. Selvamanickam - Superpower: E. L. Keehan University of Kansas: J. Wu High Magnet Lab. Tallahassee: D. Larbalestier **AMSC:** M. Rupich, S. Fleshler SuNAM: S.Moon ISTEC: T. Izumi - Kyushu Institute of Technology: K. Matsumoto - Hiroshima University : P. Mele -Nagoya Univ. : Y. Yoshida -Fugikura: lijima - Showa: T. Koizumi

Adapted from Physcs World August 2015

The history of Coated Conductors

High Energy Physics, Fusion, Ultrahigh Field NMR,

Large Electrical Motors and Generators: Wind Mills, Airplanes, Ships,... Ultra-High field, 4.2K Design stage

High field, 40-60K

Energy Future paradigm : cables, FCL, transformers, *Much activity with prototypes*

Low and medium field, 77K Many devices already in grid

Nanocomposite Coated Conductors can do the work and boost applications at high and low temperature

T. Puig -EUCAS 2015

... scalable technology for growing km-length epitaxial (RE)Ba₂Cu₃O₇ films on flexible metallic substrates T. Puig -EUCAS 2015

Nowadays CC are ready for commercialization

Silver

HTS

YBCO

GdBCO

EuBCO

We have a strong

buffer

CeO₂

Y₂**O**₃

YSZ

MgO

LMO

...

industry in CC

manufacture

substrate

Hastealloy

Ni-based

Stainless steel

Tape

The Coated

Conductor

2G superconducting tape by PVD THEVA PILOT PRODUCTION LINE

GdBCO evaporation on ISD-MgO tape

Min. processing speed: 30+ m/h

fully automated

inline quality inspection

reel-to-reel & air-to-air tape transfer

Piece length: 1 km Capacity: 150 km/yr in 12 mm-width

Expanded pilot line

Construction in 2015

(Start sampling for customer projects in 2015/2016)

- Planned capacity > 200 km/yr
- Present Length: 20 -100 m

All CSD approach on RABiTs

Lab processing

Expanded Pilot Line

Chemical Solution Deposition

Reel-to-reel Ink Jet Printing pilot plant for all CSD on ABAD Bruker subtrates

10 m CeO₂ buffer @ 28 m/h

1 m YBCO *T. Puig -EUCAS 2015*

MOCVD approach on IBAD

Produciton Capacity: 1000 Km/yr

T. Puig -EUCAS 2015

Piece length: 500 m

Installations at Fujikura

Installations at Showa

Batch furnace for TFA-CSD / IBAD

Production capacity : 20 Km/yr Piece length: 125 m

SuNAM (Korea): Production Facilities

RCE-DR on IBAD

IBAD facility: ~17 m long

Production capacity: ~ 1000 km/yr. Piece length : 1 km

Reactive Co-Evaporation Deposition and Reaction

T. Puig -EUCAS 2015

SUNAM

32 T LTS-HTS Magnet

26.4 T HTS Magnet

With Multi-Width and No-Insulation REBCO Wire

26 Double Pancake Coils Stacking

Nanotechnology engineering enables YBCO to improve at all regions

and postulate for low T applications

T. Puig -EUCAS 2015

ICMAB

The outstanding push towards scalable Artificial Pinning Centers

 J. Driscoll, Nat. Mat. 3(2004), T. Haugan, Nature 430(2004)
 J.

 Y. Yamada, APL 87(2005); S. Kang, Science 311 (2006)
 A.

 B. Maiorov, Nat Mat 8 (2009); A Kiessling, SUST 24 (2011)
 M.

J. Guiterrez, Nat Mat 11 (2007) A. Llordés, Nat Mat 6 (2012) M. Miura, SUST 26 (2013), M. Miura, SUST 23(2010) S. Engel, APL 90 (2007) T. Puig-EUCAS 2015

Growth of ReBCO Nanocomposites Simultaneous deposition and growth (Case PLD, MOCVD and HLPE)

Deposition Absorption Surface diffusion Self-assembly

- Epitaxial nanorods form with YBCO simultaneously
- Semicoherent interfaces between nanorods and YBCO induce localized strain

Pulsed Laser Deposition (PLD): Physical vapor deposition Metalorganic chemical vapor deposition (MOCVD): Chemical vapor deposition Hybrid liquid phase epitaxy (HLPE): Physical deposition with solid-liquid reaction

Growth of ReBCO Nanocomposites Sequential deposition and growth (CSD, RCE-DR and CSD-TLAG cases)

- A heavily long range isotropic nanostrained matrix

Chemical Solution Deposition of metalorganics (MOD-CSD) Chemical gas-solid conversion

Reactive co-evaporation by deposition and reaction (RCE-DR) Physical co-evaporation and fast conversion from a liquid

Strong increase of Pinning Force (F_p=J_cxB) by Nanocomposites

X.Obradors, T. Puig, A. Palau, F. Sandiumenge, P. Mele, K. Matsumoto – "Nanostructured Superconductors with efficent vortex pinning" in Comprehensive nanoscience and nanotechnogly, AP, Vol 3 (2011) 303-349 [added with YBCO+Ba2YNbO6 and SmBCO+BHO] *T. Puig -EUCAS 2015*

It is all about Vortices ... quantized flux lines

2ξ ~ nm

In HTS nanometer defects get into the game

Abrikosov Vortices in HTS

Thermal fluctuations, elastic energy, pinning energy and vortex-vortex repulsion play relevant roles

Vortex Pinning Centers in HTS

Great variety of pinning sites and complex vortex matter OD-PC: Oxygen vacancies, element 1D-PC: Dislocations, columnar defects

substitutions, point defects

2D-PC: Grain boundaries, **twin boundaries**, planar defects

3D-PC: Precipitates, secondary phases, local strain

Nanoengineering is the path towards control of vortex pinning and enhace performances. Interaction with natural defects to be considered T. Puig -EUCAS 2015

The Breakthroughs of Nanocomposites by PLD

A physical vapor phase growth method giving rise to a self-assembly process of nanocolumns through spontaneous phase segregation

First demonstration of 3D epitaxial selfassembly in complex functional oxides

Anisotropic increase of perfomance with BaZrO₃ nanorods

Angle (deg)

Anisotropic (correlated) pinning

Yamada et al, APL 87(2005), A. Goyal, et al, SUST 18 (2005), Maiorov et al. Nature Mat. 8(2009)

Tunability of Nanocomposites by PLD

Growth temperature, growth rate, second phase composition determine self-assembling with direct consecuences on $J_{\rm c}$

Maiorov et al. Nature Mat. 8(2009)

Self-assembly in PLD Nanocomposites

Strain field develope around the nanocolumns to reduce boundary csic energy inducing self-assembly

but associated strain may also induce isotropic pinning at low T

C. Cantoni et al , ACSNano 2011

Elastic Strain Model Understanding & controlling self-assembly of Artificial Pinning Centers

F.J. Baca, et al, Advanced Functional Materials 23, (2013); J. Wu, et al, *IEEE TAS* 25 (2015); Wu et al, submitted

Advanced APC structures by PLD

GdBa₂Cu₃O₇-BaHfO₃

Opportunities to tune Isotropic / anisotropic performances

Hybrid multilayers

Segmented BaSnO₃ nanorods

Mixed double perovskite nanocomposites Ba₂Y(Nb_{0.5}Ta_{0.5})O₆ nanorods and Y₂O₃ nanoparticles

10% cell parameter difference between YBCO and BYNTO causes the presence of misfit dislocations

Rich pinning landscape \rightarrow Complex J_c dependencies expected

~4 nm

G. Ercolano et al, SUST 24 (2011), Opherden et al, to be published

 $\rightarrow B_{\rm m} = 2.2 \, \mathrm{T}$

High pinning properties by mixed double perovskites

Blic

150 [x4/cm³]

J_c [kA/cm²]

50

Overall Field Direction

(Y/Gd),03

-⁰

80 100 120 140 160 180 200

40

6 T

7 T

axis

Ba (Y/Gd)(Nb/Ta)O

60

UNIVERSITY OF

Vortices accommodate simultaneously to nanorod-segments and nanoplatelets

ab-planes

60

G. Ercolano et al, SUST 24 (2011)

Pahlke et al., IEEE Trans. Appl. Supercond., to be published

EuBa₂Cu₃O₇ + BaHfO₃ by PLD has superior properties and it is scalable

T. Puig -EUCAS 2015

ISTEC

İSIER.

UNIVERSITYof The Breakthroughs of Nanocomposites by MOCVD

A chemical vapor phase growth method giving rise to a self-assembly process of nanocolumns through spontaneous phase segregation

(Y,Gd)BCO – BZO with extrem high density of BZO nanorods

The Breakthroughs of Nanocomposites by Chemical Solution Deposition

A **chemical gas-solid reaction growth** method giving rise to a self-assembly process of **nanoparticles** through spontaneous phase segregation

A. Llordés, et al. Nat. Mater, 11, 329 (2012), J. Gutierrez et al, Nat. Mater. 6, 367 (2007)

T. Puig -EUCAS 2015

ICMAB

High performance of CSD-YBCO Nanocomposites High performance at all temperatures CMAB 600 **10K** Einning force (GN/m²) 9300 80 93000 93000 93000 9300 9300 9300 10 **NANOCOMPOSITE 10K** ¹,0 J_c (MA/cm²) 77K **NANOCOMPOSITE 65K** Pristine $\circ - 8BYTO$ **NANOCOMPOSITE 77K** Nb-Ti 4.2K -*-10BZO5YO **YBCO-TFA 65K** 20 0,01 0,01 0,1 10 () $\mu_0 H(T)$ 8 () 6

A. Llordés, et al. Nat. Mater , 11, 329 (2012), J. Gutierrez et al, Nat. Mater. 6, 367 (2007)

T. Puig -EUCAS 2015

 $\mu_0 H(T)$

Incoherent YBCO-BaZrO₃ interfaces give rise to high density of Y248 intergrowths and associated nanostraincsic

A. Llordés, et al. Nat. Mater, 11, 329 (2012), J. Gutierrez et al, Nat. Mater. 6, 367 (2007)

T. Puig -EUCAS 2015

New vortex pinning mechanism based on strain induced Cooper-pair suppression Nanostrain leads to unpaired nanoscale regions

G. Deutscher, APL (2010) Llordes et al., Nat. Mater 2012 Pair breaking energy: $2\Delta = 4 \frac{(t_{CuO})^2}{U} - 8t_0$ $t_{CuO} (\propto 1/d_{CuO}^5)$

t_{cuo}: transfer integral between
Cu *d* and O *p* orbitals *U*: on-site Coulomb repulsion *t_o*: half bandwidth

Tensile strain quenches pair formation

Vortex bending accommodates to a 3D ramified network of localized isotropic nano-strained regions

Isotropic Strong pinning occurs by saving vortex line tension energy in a significant fraction of their length

T. Puig -EUCAS 2015

ICMAB

Vacancies in Y248 intergrowth avoid Stoichiometry Catastrophe

Nanocomposites by Chemical Solution Deposition : (Y,Gd)BCO+BZO

Improving in-field performance by limiting coarsening and avoiding porosity **in thick films** by an **interim processes**

47

In-Field and Temperature dependence **islera** of (Y,Gd)BCO+BZO

Nanocomposites by Chemical Solution Deposition with preformed nanoparticles

UNIVERSITEIT GENT

Universitat Autònoma de Barcelona

Stabilizing compound

YBCO-TFA+ZrO₂Np

 $CeO_2 Np(2 \pm 0.4 nm)$ in **YBCO-TFA** solution

ZrO₂ Np(8x2 nm) in **YBCO-TFA** solution

Thermal and microwave-assisted

solvothermal synthesis of nanoparticles

Several oxide nanoparticles could to be stabilized in alcoholic and ionic environment of YBCO precursor solution at high concentrations

P. Cayado, K De Keukeleere, et al SUST (submitted), F. Martinez-Julian, T.Puig et al. J. Nanosc.&Nanotech. 11 (2011) I. Bretos et al, J. Mat. Chem. C 3 (2015), K. De Keukeleere et al, Inorg. Chem. 54 (2015) T. Puig -EUCAS 2015

CSD growth of Nanocomposites with preformed nanoparticles

de Barcelona eurotapes Growth of colloidal solutions tend to induce nanoparticles reactivity, pushing, coarsening or accumulation at the substrate interface, but performance starts to show up

UAB

Nanocomposite Coated Conductors

CSIC

A reality and yet continuously improving CSIC Now, strong interest for low temperature A properties and ultrahigh magnetic fields CMAB

51

Isotropic (random) strain seems to be a common feature for increasing properties at low temperature and reach ultrahigh fields with nanocomposites

CONCLUSIONS

- > We are ready for HIGH FIELD CONDUCTORS development and optimization based on Nanocomposite Coated conductors (NCCs) ICMAB
- We should concentrate effort on vortex pinning at 4.2 K
- HTS must join LTS efforts
- NCCs are scalable based on "react and wind"
- Reinforce fast and low cost growth methods
- Expanding manufacturing capabilities will decrease cost (Figure of merit €/kA-m @ H,T)
- R&D in technology issues beyond Critical Current: Compactness, transposition, quench detection, protection, joints, insulation, mechanical strength, ...

A winning story of joint efforts

Materials Engineers, Physicists, Chemists, Electrical Engineers, Manufacturers: The Superconducting Community