

Superconducting Metamaterials

P. Jung¹, S. Butz¹, N. Maleeva^{1,2}, A. Averkin², N. Abramov², K. Shulga^{2,3}
V. P. Koshelets^{2,4}, L. V. Filippenko^{2,4}, V. Chichkov²
A. Karpov², S. V. Shitov^{2,4}, V. V. Ryazanov^{2,3}, and <u>A. V. Ustinov^{1,2,3}</u>

¹ Karlsruhe Institute of Technology (KIT), Germany
² National University of Science and Technology (MISiS), Moscow, Russia
³ Russian Quantum Center (RQC), Moscow, Russia
⁴ Kotel'nikov Institute of Radio Engineering and Electronics (IREE), Moscow, Russia

Acknowledgements

Superconducting metamaterials:

S. M. Anlage

University of Maryland, College Park, Maryland, USA

A. P. Zhuravel

B. Verkin Low Temperature Physics Institute, Kharkov, Ukraine

Quantum metamaterials:

M. Jerger and A. Lukashenko Physikalisches Institut, Karlsruhe Institute of Technology, Germany

> P. Macha, U. Hübner, and E. Il'ichev Institute of Photonic Technology, Jena, Germany

Materials and Metamaterials

material is made out of *atoms*

metamaterial is composed out of *units* called *meta-atoms*

Electromagnetic wave in a material

Visible light: $\lambda \cong 390$ nm – 700nm

Materials are composed out of atoms – smallest resonators "made" by nature

Electromagnetic metamaterials

Controlling the propagation of light through material parameters

Magnetic Meta-Atoms

Microwave Metamaterials and Meta-Atoms

$\lambda \gg a$ can be achieved for "macroscopic" dimensions

Shelby et al., *Science* **77** 292 (2001)

Problem: losses increase with decreasing the size of meta-atoms

Distance between meta-atoms: a ≅ 5 mm
Microwaves (X-band): λ ≅ 2.5cm - 3.75cm

Modern history of metamaterials

J. B. Pendry et al. Phys. Rev. Lett. 76, 4773 (1996)

D. R. Smith et al. Phys. Rev. Lett. **84**, 4184 (2000)

Veselago-Pendry lens

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85, 3966 (2000).

Not so modern history of metamaterials ...

H. Lamb, *Proc. London Math. Soc.* **1**, 473 (1904) (backward waves; mechanical systems)

A. Schuster, *An Introduction to the Theory of Optics*, pp. 313-318 Edw. Arnold, London (1904) (backward waves)

H. C. Pocklington, *Nature* **71**, 607 (1905) (phase velocity opposite to the group velocity)

L. I. Mandel'shtam, *Zh. Eksp. Teor. Fiz.* **15**, 476 (1945) (in Russian);

G. D. Malyuzhinets, *Zh. Tekh. Fiz.* **21**, 940 (1951) (in Russian)

D. V. Sivukhin, *Opt. Spektrosk.* **3**, 308 (1957) (in Russian) (n < 0)

Superconducting Metamaterials

- Decreasing size of meta-atoms without extra loss
- Easily tunable frequency (magnetic field, current, temperature)
- Nonlinear, multi-stable, and switchable
- Ultra-compact low-loss resonators
 - size/wavelength < 10⁻⁴ is within reach
- Quantum metamaterials
 - arrays of superconducting qubits
 - quantum optics with artificial atoms

Equivalent circuit for a Josephson junction

Superconducting quantum interference device (SQUID)

Tunable resonance frequency of a SQUID

1D SQUID metamaterial

- 1D coplanar transmission line
- coupling to magnetic component of the field
- Central conductor is used for both $\Phi_{\rm DC}$ and $\Phi_{\rm RF}$

SQUID-based 1D metamaterial

 \bigcirc

Results for 54 SQUIDs: tuning the transmission S₂₁ by magnetic flux

P. Jung, S. Butz, S. V. Shitov, and A. V. Ustinov, Appl. Phys. Lett. 102, 062601 (2013)

 \mathcal{O}

Fitting experiment to theory

Extracting effective μ_r

S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, and A. V. Ustinov, Opt. Express 21, 22540 (2013)

Tuning effective μ_r by magnetic flux

S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, and A. V. Ustinov, Opt. Express 21, 22540 (2013)

Nonlinear and multi-stable superconducting metamaterials

 \bigcirc

Nonlinear effects: Multi-stability

R. Vijay, M. H. Devoret, and I. Siddiqi Rev.Sci.Intr. 80, 111101 (2009)

Potential energy of junction and SQUID

potential energy

Nonlinear effects: Multi-stable metamaterial

P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets, and A.V. Ustinov, Nature Commun. 5, 3730 (2014)

Nonlinear effects: Multi-stable metamaterial

P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets and A.V. Ustinov, Nature Commun. 5, 3730 (2014)

Multi-stability: Comparison with theory

P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets and A.V. Ustinov, Nature Commun. 5, 3730 (2014)

"All-optical" switching between stable states

P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets and A.V. Ustinov, Nature Commun. **5**, 3730 (2014)

Ultra-compact low-loss resonators

Superconducting spiral resonator

C. Kurter, A.P. Zhuravel, J. Abrahams, C.L. Bennett, A.V. Ustinov, and S.M. Anlage, IEEE Trans. Appl. Supercond. **21**, 709 (2011)

Superconducting spiral resonator

Frequency (GHz)

N. Maleeva, M.V. Fistul, A. Karpov, A.P. Zhuravel, A. Averkin, P. Jung, and A. V. Ustinov, J. Appl. Phys. **115**, 064910 (2014)

Imaging resonant modes in a superconducting spiral resonator

N. Maleeva, M.V. Fistul, A. Karpov, A.P. Zhuravel, A. Averkin, P. Jung, and A. V. Ustinov, J. Appl. Phys. **115**, 064910 (2014)

Ultra-compact superconducting spiral resonators

In a superconducting 100-nm wide 5 nm thick NbN nanowire the kinetic inductance $L_{\rm k}$ can be dominating the geometric inductance $L_{\rm g}$ by a factor > 100

G. Goltsman et al., IEEE Trans. Appl. Supercond. **17**, 246 (2007) A. J. Annunziata et al., Nanotechnology **21**, 445202 (2010)

Spiral resonator of 100 nm wide NbN wire

G. Goltsman et al., IEEE Trans. Appl. Supercond. 17, 246 (2007)

Spiral resonator of 100 nm wide NbN wire

1st resonance frequency f₁ =193 MHz wavelength $\lambda = 1.5$ m resonator size $d = 100 \ \mu$ m yields $\lambda/d = 15000$ => size/wavelength ≈ 10⁻⁴

Quantum metamaterials

Superconducting flux qubit

flux quantization: $\varphi_1 + \varphi_2 + \varphi_3 + 2\pi \frac{\Phi}{\Phi_0} = 2\pi n$

effective 2D potential: $\frac{U}{E_J} = \cos \varphi_1 + \cos \varphi_2 + \alpha \cos \left(-\varphi_1 - \varphi_2 - 2\pi \frac{\Phi_{\text{ext}}}{\Phi_0}\right)$

> Mooij et al. Science **285**, 1036 (1999) Van der Wal et al. Science **290**,1140 (2000)

 \mathcal{O}

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015. EUCAS 2015 plenary presentation PL-5. Not submitted to *IEEE Trans. Appl. Supercond.*

Superconducting flux qubit as a quantum two-level system

Superconducting quantum metamaterial: array of flux qubits

20 flux qubits

P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Huebner, H.-G. Meyer, E. Il'ichev, and A. V. Ustinov, *Nature Commun.* **5**, 5146 (2014)

 \bigcirc

Collective coupling of 8 qubits out of 20

P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Huebner, H.-G. Meyer, E. Il'ichev, and A. V. Ustinov, *Nature Commun.* **5**, 5146 (2014)

 \bowtie f ¥ † Emerging Technology From the arXiv September 30, 2013

World's First Quantum Metamaterial Unveiled

German researchers have designed, built, and tested the first metamaterial made out of superconducting quantum resonators.

868666666	2000

In recent years, physicists have been excitedly exploring the potential of an entirely new class of materials known as metamaterials. This stuff is built from repeating patterns of sub-wavelength-sized structures that interact with photons, steering them in

ways that are impossible with naturally occuring materials.

All in all, a significant first step for quantum metamaterials.

Ref: http://arxiv.org/abs/1309.5268: Implementation of a Quantum Metamaterial

Summary

Tunable and switchable SQUID based metamaterials

- decreasing size of meta-atoms without extra loss
- easily tunable frequency (magnetic field, current, temperature)
- strong nonlinearity (if needed, e.g. for parametric gain)

Ultra-compact low-loss resonators

size/wavelength < 10⁻⁴ is within reach

Quantum metamaterials

- arrays of superconducting qubits
- quantum optics with artificial atoms

Applications

- MRI imaging
- tunable antennas
- ultra-compact filters
- reflective back planes, metasurfaces

Alexey Ustinov

Review: P. Jung, A. V. Ustinov, S.M. Anlage, Supercond. Sci. Techn. 27, 073001 (2014)

42