PB BI

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

Single-electron transport and the new standard for electrical current

Hansjörg Scherer PTB department 2.6 "Electrical quantum metrology"

Talk outline

- SI unit system and the ampere
- Single-electron current sources in general ('classical' and 'modern' devices....)
- Future "quantum ampere" realisation based on single-electron devices: Concepts and challenges
- Recent developments and advances
- Conclusions & outlook

Système International d'Unités (SI) - since 1960

The ampere is the SI unit of electric current and is the electrical base unit.

SI definition of the ampere

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10^{-7} newton per metre of length.

This definition

- defines the values for the magnetic constant ($\mu_0 \equiv 4\pi \cdot 10^{-7} \text{ N/A}^2$) and for the electric constant $\varepsilon_0 = 1/\mu_0 c_0^2$
- uses the action of force from electrical currents (m, kg, s → A)

2.107 Newton

Mete

¹ M_{eter}

Realisation of the SI ampere

PIR

Electrical units: Formerly ...

Electrical quantum effects (since 1990)

Josephson Effect, discovered 1962 by Brian D. Josephson

Quantum-Hall Effect, discovered 1980 by Klaus von Klitzing

Electrical units: Formerly and today

Electrical units: Formerly and today

PIR

Revision of the SI: Redefinition of the units

Planned by the "Conférence Générale des Poids et Mesures" and impending for 2018:

Definitions for all SI base units will entirely be based on **fixed numerical values for fundamental constants** $(h, e, k_B, N_A, c, ...)$

→ This will restore coherence between the "conventional" electrical units and the SI

Redefinition of the SI ampere

Resolution 1 of the 24th CGPM (2011):

"The International System of Units, the SI, will be the system of units in which... the elementary charge *e* is exactly 1.602 17X ×10⁻¹⁹ coulomb..."

Single-electron transport (SET) devices are considered the 'silver bullet' solution for the realisation the new ampere:

- it allows the <u>most direct</u> unit realisation using the physical definition of current *I* = dq/dt, exploiting the simple and evident relation *I*_{SET} = *e*·*f*
- it involves <u>only one</u> fundamental constant (e), not two (e & h), as Josephson-/QHE-based realizations do.

SET current sources

"Classical" devices: SET pumps made from ultra-small tunnel junctions (metal)

J. Pekola et al., "Single-electron current sources: Toward a refined definition of the ampere", Rev. Mod. Phys. <u>85</u>, 1421-1472 (2013)

SET current sources

"Classical" devices: SET pumps made from ultra-small tunnel junctions (metal)

RC time constant of tunnel junctions: $f \le 100 \text{ MHz} \Rightarrow I = e \cdot f \le 16 \text{ pA} (1.6 \cdot 10^{-11} \text{ A})$

SET current sources

"Modern" devices: SET pumps made from **'dynamic quantum dots' (semiconductor)**

$f \sim 1 \text{ GHz}$ $\Rightarrow I = e \cdot f \sim 160 \text{ pA}$

GaAs hetero structure + Schottky contacts (gates)

B. Kaestner and V. Kashcheyevs, "Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress", Rep. Prog. Phys. <u>78</u>, 103901 (2015)

Future SET-based "quantum ampere" realisation

Future SET-based "quantum ampere" realisation

Future SET-based "quantum ampere" realisation

EMRP Joint Research Project SIB07 May 2012 - April 2015

JRP 'Qu-Ampere' Quantum ampere : Realisation of the new SI ampere

For details see: http://www.ptb.de/emrp/qu_ampere.html

Future SET-based quantum current standards

SET current sources generate small currents! ⇒Required: Current amplification and measurement methods

SET current sources are subject to single-electron transfer errors! ⇒Required: SET error (ac)counting schemes

State-of-the-art in 100 pA measurements

- Commercial pAmmeters
 offer accuracies of not better than 10 ppm,
 limited by gain instabilities
- Cryogenic Current Comparators (CCCs) are alternative high-accuracy current amplification techniques, but in the low-flux (small current) regime they suffer from noise rectification effects

\Rightarrow Novel concepts and instrumentation are necessary!

Wanted: A handy (mobile), non-cryogenic, single-box tabletop electrometer with superior accuracy!

'Ultrastable low-noise current amplifier' (ULCA)

PTB development, to be commercially available	ULCA key specifications (standard variant)	
	Effective transresistance $A_{\rm TR}$	$1\text{G}\Omega$ (1000 $\times1\text{M}\Omega$)
	Temperature coefficient of A_{TR}	< 0.2 ppm/K
	Long-term stability of A _{TR}	< 5 ppm/year
	Fluctuations of A_{TR} in 1 week	0.1 ppm typical
	Input current range	±5 nA
	Input impedance	1Ω
	>Effective input noise	2.4 fA/ \sqrt{Hz} (f < 1 Hz)
Further ULCA features:	>1/f-noise corner	1 mHz
	a low energing ourrent (11 mA maximum)	

- Modular design with one or two independent channels
- Uninterrupted power supply via two intermittently charging/powering 12 V batteries in external box

- Low operating current (11 mA maximum)
 → negligible self-heating effects
- Temperature sensors in each channel for correction of temperature effects (only necessary for applications requiring highest accuracy)

Measures 100 pA with 0.1 ppm total uncertainty in about 10 hours!

- D. Drung et al., "Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy", Rev. Sci. Instrum. <u>86</u>, 024703 (2015)
- D. Drung et al., "Improving the traceable measurement and generation of small direct currents", IEEE Trans. Instrum. Meas. <u>64</u>, 3021 – 3030 (2015), open-access <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u> <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u>

CCC system for calibration of the ULCA

SQUID electronics

Digital dual channel current source and bridge voltmeter

Comparator with binary winding arrangement (12- bit or 14-bit) and SQUID null detector, in superconducting screen

PTB developments, commercially available

- D. Drung et al., "Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy", Rev. Sci. Instrum. <u>86</u>, 024703 (2015)
- D. Drung et al., "Improving the traceable measurement and generation of small direct currents", IEEE Trans. Instrum. Meas. <u>64</u>, 3021 – 3030 (2015), open-access <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u> <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u>

CCC and ULCA: Effective input current noise

- D. Drung et al., "Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy", Rev. Sci. Instrum. <u>86</u>, 024703 (2015)
- D. Drung et al., "Improving the traceable measurement and generation of small direct currents", IEEE Trans. Instrum. Meas. <u>64</u>, 3021 – 3030 (2015), open-access <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u> <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u> <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7132759</u>

High-accuracy SET current measurements

High-accuracy SET current measurements

F. Stein et al., "Validation of a quantized-current source with 0.2 ppm uncertainty", APL <u>107</u>, 103501 (2015)

High-accuracy SET current measurements

F. Stein et al., "Validation of a quantized-current source with 0.2 ppm uncertainty", APL <u>107</u>, 103501 (2015)

Future SET-based quantum current standards

SET current sources generate small currents! ⇒Required: Current amplification and measurement methods

SET current sources are subject to single-electron transfer errors! ⇒Required: SET error (ac)counting schemes

Transfer errors in SET pumps

Example: SET pumps based on tunnel junctions

PHYSICAL REVIEW B

VOLUME 62, NUMBER 23

15 DECEMBER 2000-I

Noise-induced leakage and counting errors in the electron pump

Transfer errors in SET pumps

Example: SET pumps based on dynamical quantum dots

Counting single-electron transfer errors

SET pump + SET detector

 $I_{\text{SFT}} = \langle n \rangle \cdot e \cdot f$ with $\langle n \rangle \approx 1$ $\langle n \rangle$ incl. uncertainty (!) must be quantified for any metrological application/experiment! (Quantum Metrology Triangle, SET current standard, ...)

Key idea: To count not every electron (way too fast!), but just count the errors (much more rare)!

Counting single-electron transfer errors

Idea (1992) and first pioneering experiments (1994) by NIST:

Counting single-electron transfer errors

... in the "Electron Counting Capacitance Standard" by PTB

Counting single-electron transfer errors

... in the "Electron Counting Capacitance Standard" by PTB

BUT... not suitable for SET current standard

Scheme does not allow to contact pump drain side by current lines because high stray capacitance of 'drain wire' deteriorates singleelectron resolution of detector (SET electrometer = SET transistor)

33

BUT... not suitable for SET current standard

Scheme does not allow to contact pump drain side by current lines because high stray capacitance of 'drain wire' deteriorates singleelectron resolution of detector (SET electrometer = SET transistor)

⇒ Counting single-electron transfer errors must be done in a separate evaluation phase, which is different from the 'current sourcing' operation mode!

Advanced SET error accounting scheme

SET electrometers

SET pumps

- Allows contacting the circuit without impairing single-electron resolution of the detectors
- Allows to count SET errors while pumping unidirectionally:
 'in situ' error accounting *'Self-referenced'* SET current source
- Further advantages by correlation analysis of detector signals!
- M. Wulf, "Error accounting algorithm for electron counting experiments", PRB 87, 035312 (2013)

'Self-referenced' SET current source: device

L. Fricke et al., "Counting Statistics for Electron Capture in a Dynamic Quantum Dot", PRL <u>110</u>, 126803 (2013)

L. Fricke et al., "Self-referenced single-electron quantized current source", PRL <u>112</u>, 226803 (2014)

'Self-referenced' SET current source: first results

L. Fricke et al., "Self-referenced single-electron quantized current source", PRL <u>112</u>, 226803 (2014)

Conclusions & outlook

... on the challenges regarding "future SET-based quantum current standards": ^c

- SET-generated current level and accuracy: 100 pA with ~ 0.1 ppm within reach, 1 nA with < 0.1 ppm envisaged (silicon-based SET pumps?)
- SET error accounting:

... is mandatory for metrology! Schemes for solutions exist (demonstrated & validated), but need optimized implementations (high-speed operation, using rf-SET detectors, ...)

 Small-current measurement and amplification: The novel ULCA instrument is superior to CCC-based systems, offering unparalleled performance for applications in smallcurrent metrology (SET, and more!)

38

0

... thanks to all involved colleagues from four PTB departments in Braunschweig and Berlin!

- Quantum Electronics (PTB department 2.4)
- Semiconductor Physics and Magnetism (PTB department 2.5)
- Electrical Quantum Metrology (PTB department 2.6)
- Cryophysics and Spectrometry (PTB department 7.2)

