

High Current HTS Cables - Status and Actual Development

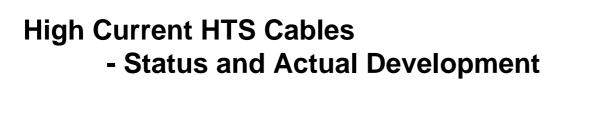
Walter H. Fietz, Michael J. Wolf, Alan Preuss, Reinhard Heller, and Klaus-Peter Weiss Karlsruhe Institute of Technology, Institute for Technical Physics, 76131 Karlsruhe, Germany

Presentation on Int. Conf. on Magnet Technol. 24, Oct. 18-23. 2015 Seoul, Korea (Paper subm. to appear in the conf. proceedings in IEEE Trans. Appl. Supercond.)

(e-mail: walter.fietz@KIT.edu.)

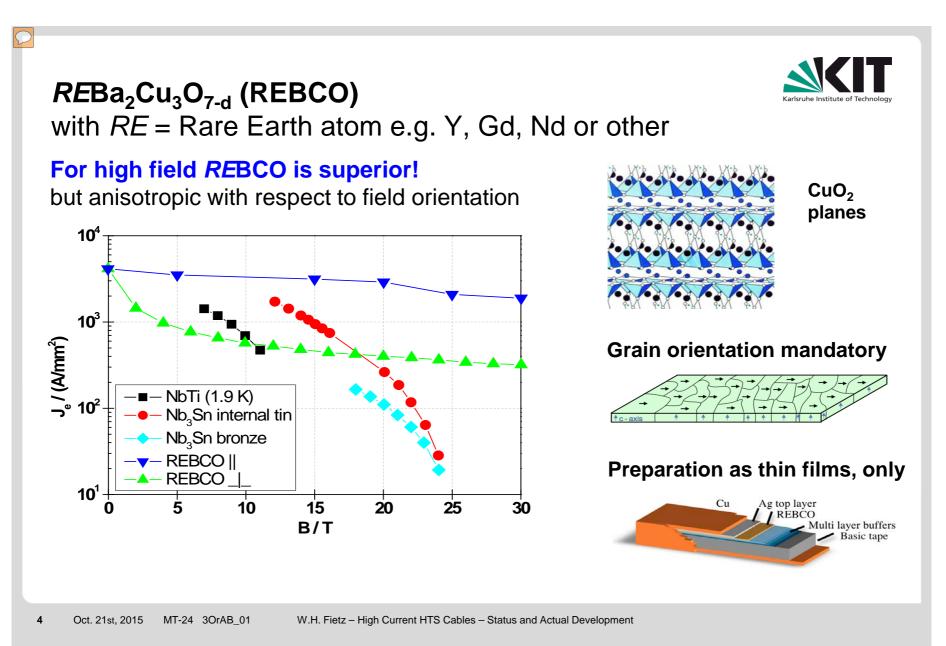
Institue for Technical Physics

KIT - The Research University in the Helmholtz Association


www.kit.edu

The following slides are essentially identical to what was shown in Seoul.

However, one slide was removed because we have not received the courtesy to show this via IEEE CSC and ESAS Superconductivity News Forum (SNF) http://snf.ieeecsc.org/


Two slides were slightly changed by the content owner and two slides were added to give actual content (these slides are flagged in the presentation).

Mini-Intro

- Highlighting: HTS Tape Property Progress
- **Overview:** High Current HTS Cable Proposals
- Optimizing: HTS-CroCo
- Outlook: Consequences using improved tapes

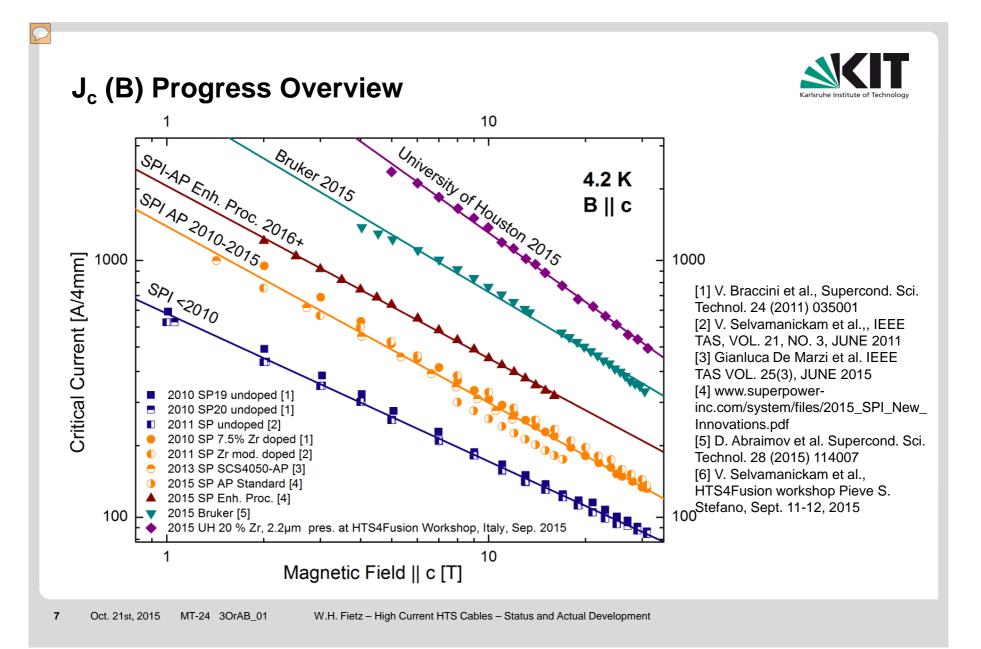
HTS high current superconductor cables ? How to come to high current cables with such tapes? 80 to 200 µm -4 to 12 mm -68 kA Nb₃Sn ITER TF coil cable multi-twisted wires of 0.81 mm cable pattern 3 x 3 x 5 x 4 x 6 optimized for low ac losses (small temperature margin!) jacketed to withstand forces

- Quench safe
- central He channel for low pressure drop

Can we come to high current conductors built from High T_c Superconductors ?

What is the target for an HTS high current cable?

Application is determining!

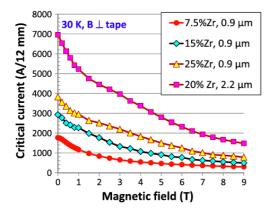

Power transmission

- may target temperatures up to 77 K
- needs electrical stabilization (but may be switched of fast in case of quench)
- ac loss optimization (depends on ac scenario)
- needs no major optimization for forces

High field magnet application needs

- high j_e
- optimization for transversal forces and Hoop stress
- electrical stabilization (quench detection, quench safety and hot spot analysis)
- ac loss optimization (depending on operation scenario)

We have to tailor the cable design to the application! Let's first check HTS progress!



Increasing REBCO Layer Thickness

Critical current density above $15MAcm^{-2}$ at 30K, 3T in 2.2µm thick heavily-doped (Gd,Y)Ba₂Cu₃O_x superconductor tapes

V Selvamanickam et al. Supercond. Sci. Technol. 28 (2015) 072002

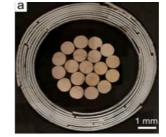
Figure 2. Magnetic field dependence of critical currents of a $2.2 \,\mu$ m GdYBCO tape with 20 mol% Zr addition and the best $0.9 \,\mu$ m thick (Gd,Y)BCO tapes with 7.5%, 15% and 25% Zr addition at 30 K in the orientation of field along the *c*-axis.

Decreasing Substrate Thickness to 30 μm

"Improved Current Density in 2G HTS Conductors Using Thin Hastelloy® C276 Substrates" D.W. Hazelton et al., ASC Conference Charlotte, 10-15- Aug.

more tapes in the same cross-section!

Different approaches for high current REBCO cables:



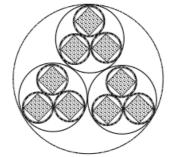
Twisted Stacked Cable (TSTC) (MIT)

CORC (Advanced Conductor Technologies LLC)

Roebel-Rutherford (KIT)

9 Oct. 21st, 2015 MT-24 3OrAB_01 W.H. Fietz – High Current HTS Cables – Status and Actual Development

Twisted stacked-tape cable conductor



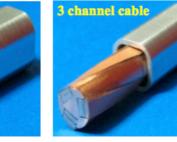
Makoto Takayasu, L. Chiesa, L. Bromberg and J.V. Minervini, Supercond. Sci. Technol. 25 (2012) 014011

A twisted stacked-tape cable demonstrator made by MIT with 40 superpower tapes of 4 mm width has been measured in KIT in the FBI facility and carried a current of 5.4 kA at 4.2 K and 12 T (C. Barth et al., SUST 28 (2015) 045015)

A 9-conductor cable (3x3) of 35 mm diameter may provide 15 kA at 77 K in self-field and 60 kA at 20 T / 4.2 K.

M. Takayasu (MIT) HTS4Fusion workshop Pieve S. Stefano Sept. 11-12, 2015

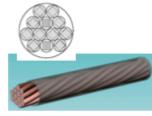
TSTC Conductor : Scale-up industrial fabrication


H-Channel TSTC Conductor

40 tape dual-stack cable

CICC mockup of TSTC conductor

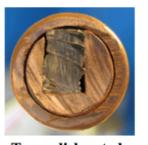
12 mm x 12 mm, copper diameter 9.5 mm



20 YBCO tapes in each helical groove

Multiple-stage cable

3x3 cable


12 sub-cable conductor

3x6 CICC

14

M. Takayasu (MIT) HTS4Fusion workshop Pieve S. Stefano Sept. 11-12, 2015

Tapes dislocated with twisting.

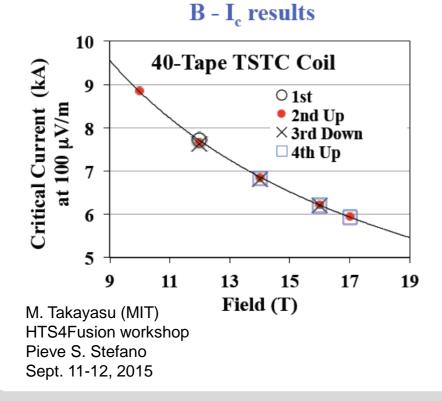
Challenges with the use of a deep channel

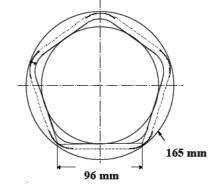
40 YBCO tapes

One channel cable

Vertical stack in helical groove

Solutions Mount TSTC basic

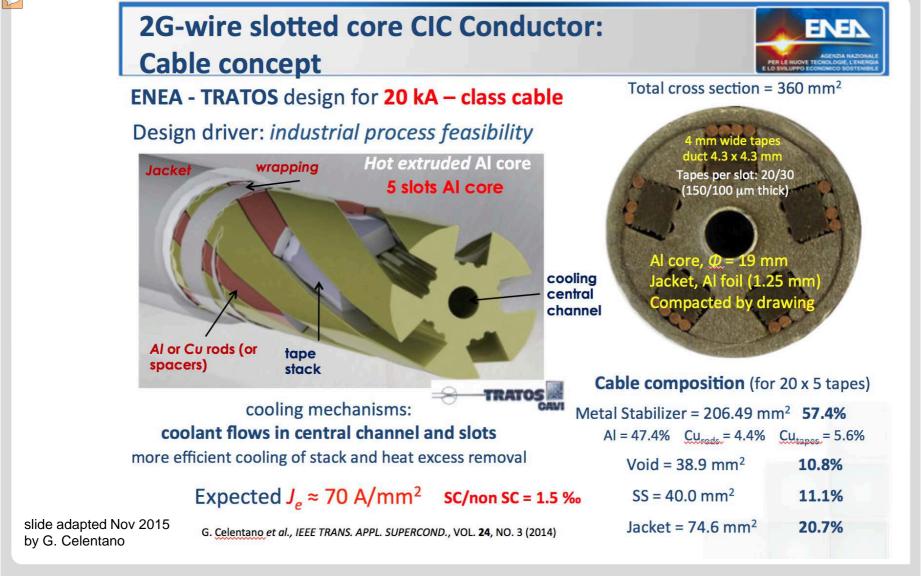

conductor in a groove

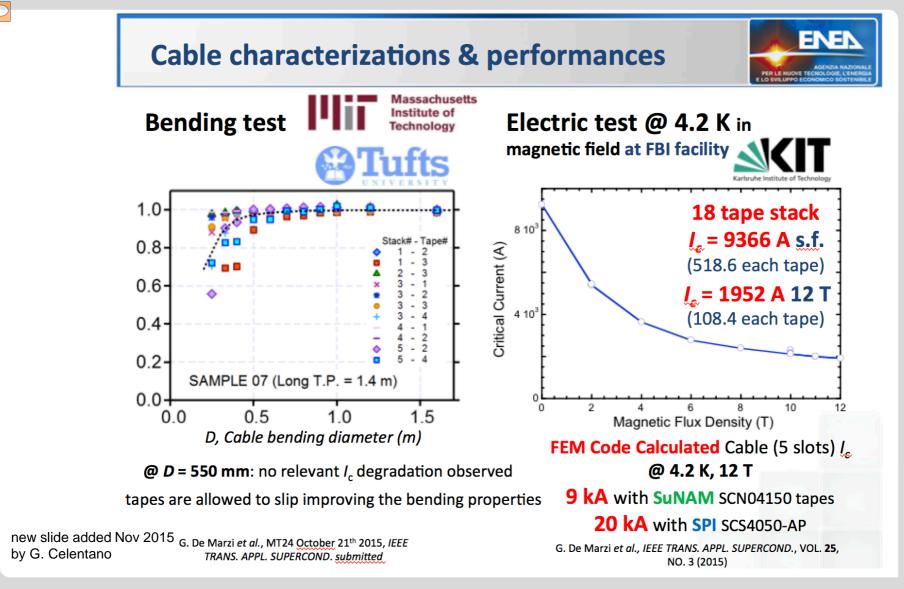


Pentagon Coil Test at NHMFL

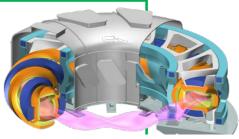
TSTC conductor of 40-tape,

4 mm width, 0.1 mm thick REBCO Tapes (SuperPower 120 A at 77 K) reached $I_c = 6.0 \text{ kA}$ (n=35) at 17 T





40-tape TSTC wound on braided copper in groove and soldered.



slide adapted Nov 2015 by N. Yanagi

100 kA-class HTS Conductor for FFHR-d1 "STARS" (Stacked Tapes Assembled in Rigid Structure)

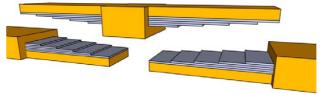
Major Specifications Operation current Operation temperature Conductor size Current density Superconductor Cabling method Cooling method Joint

94 kA @ 12 T 20 K 62 mm × 62 mm 24.5 A/mm^2 **YBCO** tapes Simple Stacking Helium gas Mechanical bridge-type lap joint

LHD-type **Heliotron Fusion Reactor** FFHR-d1

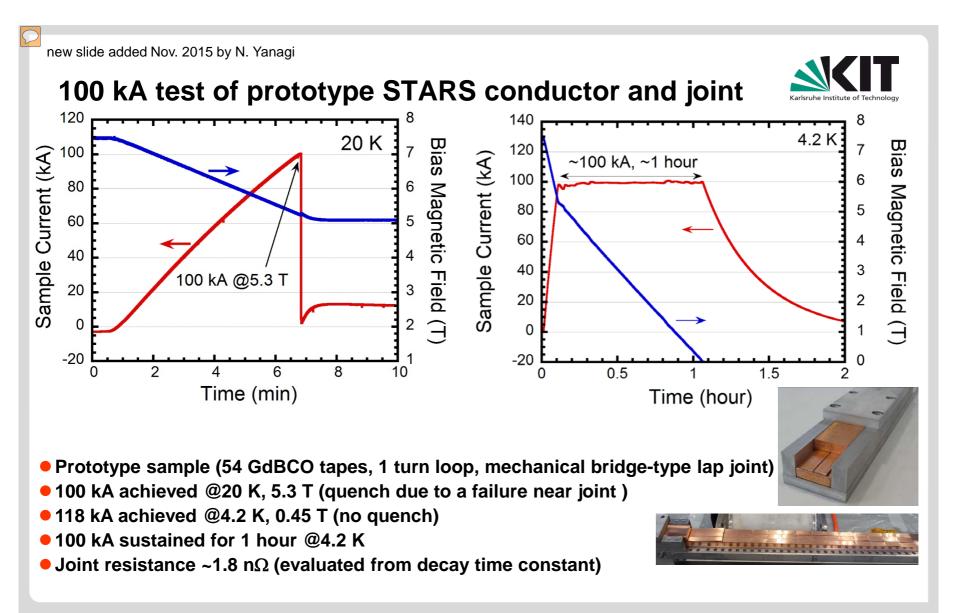
YBCO Tapes

шШ


62

Copper stabilizer

Electrical insulation Stainless-steel jacket


N. Yanagi (NIFS) **HTS4Fusion Conductor Workshop** Pieve S. Stefano, Sept. 11-12, 2015 e.g. NUCL. FUSION 55 (2015) 053021

S. Ito (Tohoku Univ.) **HTS4Fusion Conductor Workshop** Pieve S. Stefano, Sept. 11-12, 2015 e.g. Plasma and Fusion Res. 9 (2014) 3405086

No twist foreseen in heliotrons It's planned to introduce multiple joints! Details in 4OrBC 07 Nagato Yanagi at MT24.

Conductor on Round Core Cables

DSE(

Conductor on Round Core cables

CORC® cable principle

Winding many high-temperature superconducting YBCO coated conductors from SuperPower in a helical fashion with the YBCO under compression around a small former.

D.C. van der Laan, SUST 22, 065013 (2009).

Benefits

(Advanced Conductor Technologies LLC) HTS4Fusion workshop Pieve S. Stefano Sept. 11-12, 2015

D. van der Laan,

- The most flexible HTS cable available
- Very high currents and current densities
- Mechanically very strong
- Current sharing between tapes
- Partially transposed .

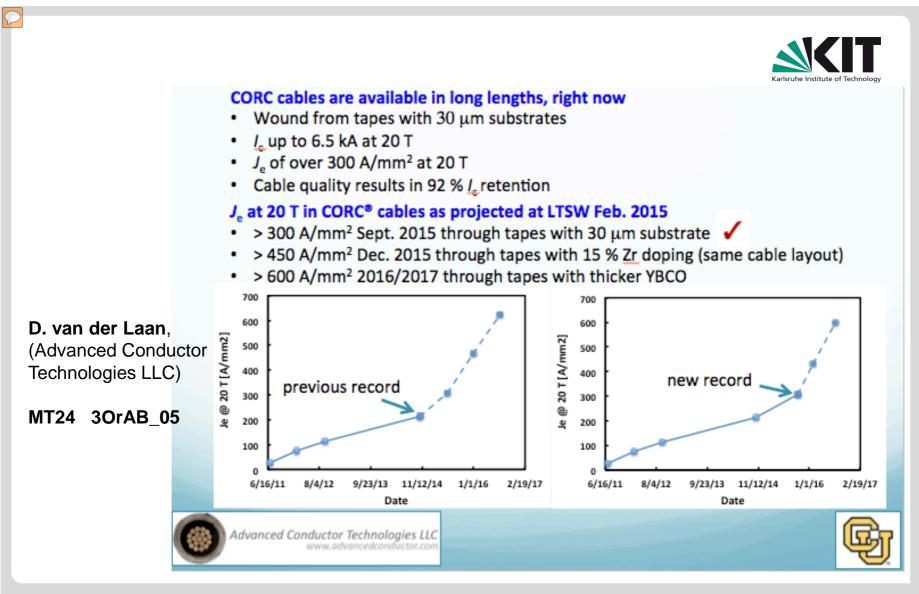
Advanced Conductor Technologies LLC www.advancedcondi

17 Oct. 21st, 2015 MT-24 30rAB 01 W.H. Fietz - High Current HTS Cables - Status and Actual Development

CORC[®] cable winding

Winding of long CORC[®] cables with custom cable machine:

- Accurate control of cable layout (tape tension, gaps spacing, etc)
- Long cable lengths possible (>100 meters)



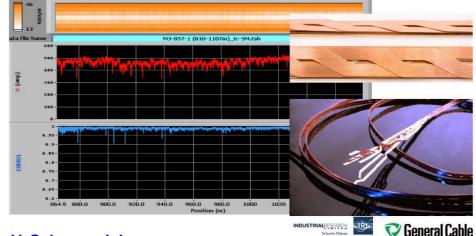
D. van der Laan, (Advanced Conductor Technologies LLC)

Improved accuracy now allows winding of CORC[®] cables from tapes with 30 μ m substrate Tape *I*_e retention increased from 70 % to over 90 % during last 3 months

Advanced Conductor Technologies LLC www.advancedconductor.com

Roebel Cable prepared by KIT

W. Goldacker et al, J. Phys. Conf. Series 43, (2006) p.901 First ROEBEL cable made from REBCO


ROEBEL assembled REBCO with 31 strands, 12 mm width SuperOx material, **2.7 kA** s.f. 77 K **20rAA_01, MT-24, F. Grilli et al.**

UNIVERSITY of HOUSTON

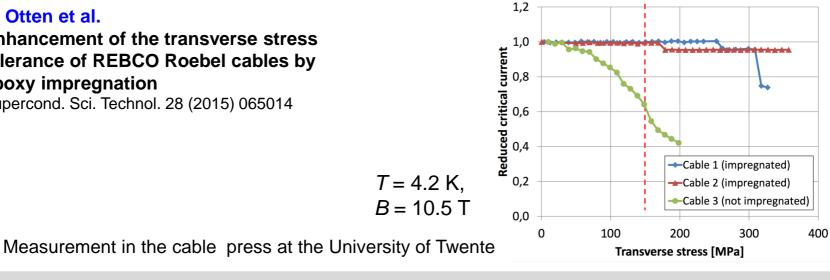
ROEBEL cables made with 2,000 m of coated conductor with uniform $\rm l_c$ and excellent 2D $\rm l_c$ uniformity

Ic = 341 A/12 mm, single piece length = 297 m Correlation coefficient > 0.9

V. Selvamanickam, EUCAS / ISEC / ICMC conference, Den Haag, Netherlands Sept. 19-23, 2011

Roebel cable

A. Kario et al.


Mechanical Properties of Roebel Coated Conductor Cable WAM-HTS-1 (1st Workshop on

Accelerator Magnets in HTS), Hamburg, Germany, May 21-23, 2014

- Bending: Easy direction down to 10 mm radius for a 10 strands cable with 126 mm twist length (but depends on tape type)
- Transverse stress: Impregnation or other support needed

S. Otten et al.

Enhancement of the transverse stress tolerance of REBCO Roebel cables by epoxy impregnation Supercond. Sci. Technol. 28 (2015) 065014

HTS for +5 T (REBCO)

Karlsruhe Institute of Technology

EuCARD-2 (task 10) feasibility-demo to use REBCO for future accelerator magnets+5 T with REBCO in a 15 T backgroundTarget performanceEUCARD³

L. Bottura et al.

5 T HTS (YBCO) stand-alone dipole for test in FReSCa2 (40 mm bore)

Eucas 2015

G. Kirby et al., "Design, construction and test of subscale coils with REBCO Roebel cable for the

EuCARD-2 Future Magnets project", 2M-LS-O2

Advances in the Development of a 10-kA Class REBCO cable for EuCARD2 Demonstrator Magnet EUCAS 2015, Lyon, September 6th-10th, 2015

Parameter		R&D target Minimum		
J _E (4.2 K, 20 T)	(A/mm ²)	600	400	
Unit length	(m)	100	50	
$\sigma(l_c)$	(%)	10		
M (1.5 T, 10 <u>mT</u> /s)	(mT)	300		
Minimum o _{transverse}	(MPa)		100	
Range of _{Elongitudinal}	(%)		±0.3	

Target cable I_C in the range of 10 kA

Main Advantages of Roebel Assembled Coated Conductor:

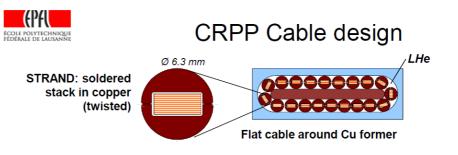
- transposed
- high j_E

More details at MT24 in

- 20rAC_06 Anna Kario
- 3Po8D_09 Wilfried Goldacker

One of the proposed

Coil designs (CERN)


CRPP: Forming Round strands by enclosing stacked conductor in Cu half shells

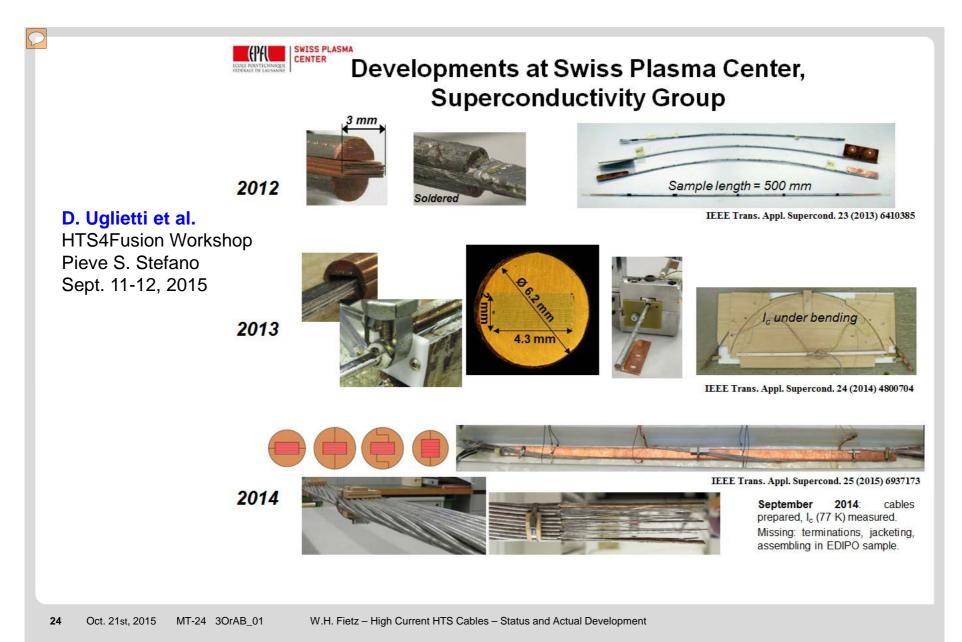
D. Uglietti et al. Development of high current HTS

conductors for Fusion at CRPP

WAM-HTS-1 (1st Workshop on Accelerator Magnets in HTS), Hamburg, Germany, May 21-23, 2014

Why soldered stack strand?

- · Mechanically solid (no voids)
- Low inter-tape resistance which is beneficial for current redistribution (inductive or during quenches)


Why flat cable?

- Limit transverse stress accumulation (see ITER cables...)
- Optimal cross section
- Less strain during winding than with a round cable

Twisted strands for large amount of transposition:

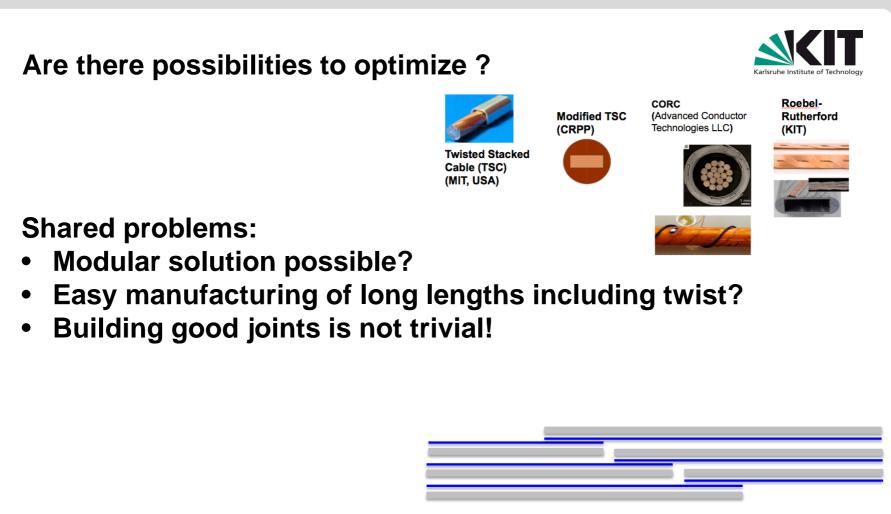
- · Equal redistribution of current during ramping
- Reduction of coupling losses

Even if not fully transposed (the tapes have not exactly the same inductance), the low inter-tape resistance ensures that a small mismatch of inductance is tolerable.

D. Uglietti et al.

HTS4Fusion workshop Pieve S. Stefano Sept. 11-12, 2015

Davide Uglietti Supercond. Sci. Technol. 28 (2015) 124005


SWISS PLASMA CENTER

Conductor design

	Tot cross section	Tot. copper cross	Void	Operating current and	T_{cc} at operating	Operating current
	(without jacket)	section	fraction	field	conditions	density (non Cu)
ITER TF (Nb ₃ Sn)	1250 mm ²	515 mm ²	32%	68 kA, 11.1 T	5.8 K to 7.0 K	280 A/mm ²
DEMO TF (Nb ₃ Sn)	1220 mm ²	675 mm^2	23%	82 kA, 13.4 T	about 6.5 K	300 A/mm ²
HTS prototype	1250 mm ²	760 mm^2	32%	50 kA, 12 T	8 K.	500 A/mm ²
				30 kA, 12 T	21 K	300 A/mm ²

Current capacity and copper cross section are in the range required for fusion magnets. Fine tuning depends on the reactor design.

for more details see Twisted and **30rAB_04** soldered strand **D. Uglietti** at MT24 Superox 1 µV/cm **Bending radius** 40strand twist pitch = 320 mm 70 mm $-B = 12 \,\mathrm{T}$ 360 mm Cable twist pitch 1000 mm $-B = 10 \, \mathrm{T}$ Expected from 30 $B = 8 \mathrm{T}$ short samples circles: T_{cs} test (X) ²⁰ L squares: I_c test Cable length 2080 mm Measured on 10 the conductor 2030 40 50 60 70 Operating current, I (kA) 25 Oct. 21st, 2015 MT-24 3OrAB_01 W.H. Fietz - High Current HTS Cables - Status and Actual Development

Connecting tape by tape is challenging!

How could we come to a superconductor cable which allows simple termination / jointing?

Use REBCO tapes with thick electro-plated Cu stabilization to optimize current transfer and electrical stabilization

Solder stacks to allow current transfer from the sides and from tape to tape

>	
`	~
>	~

Modular Solution?

Round stacked conductor strand of CRPP (Swiss Plasma Center) offers good modularity

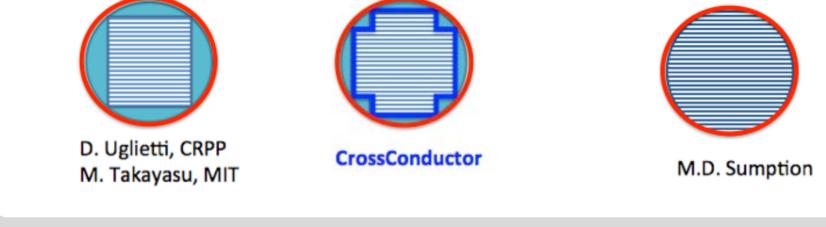
Good idea!

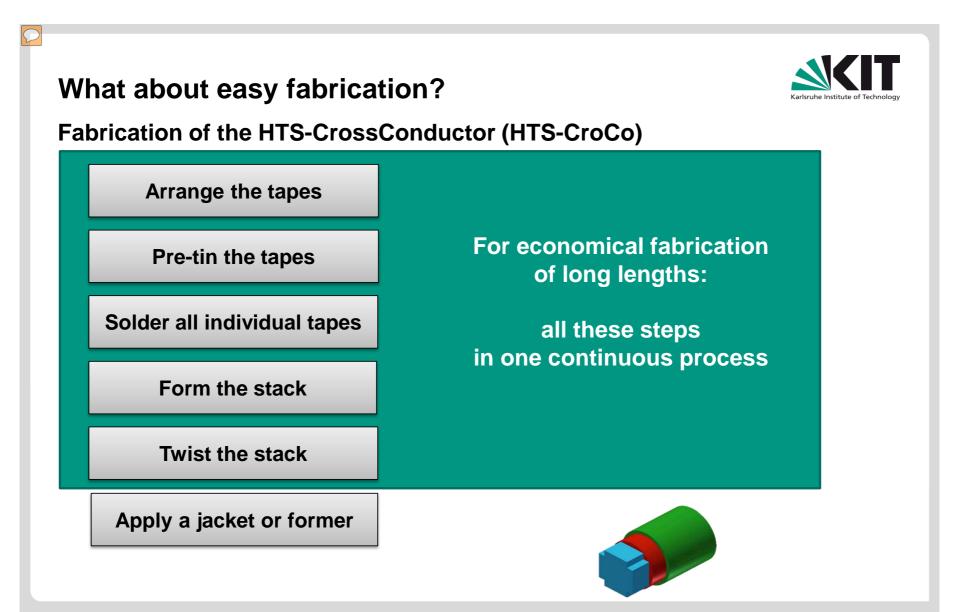
Can this approach be optimized to high $J_{E,}$ mechanical stability and towards easy manufacturing including twist ?

Could we come to a round strand with optimized j_{c, eng}?

We could try to fill the round strand almost completely with superconductor tapes.

Complete filling was already proposed in 2005


Mik IEE 15

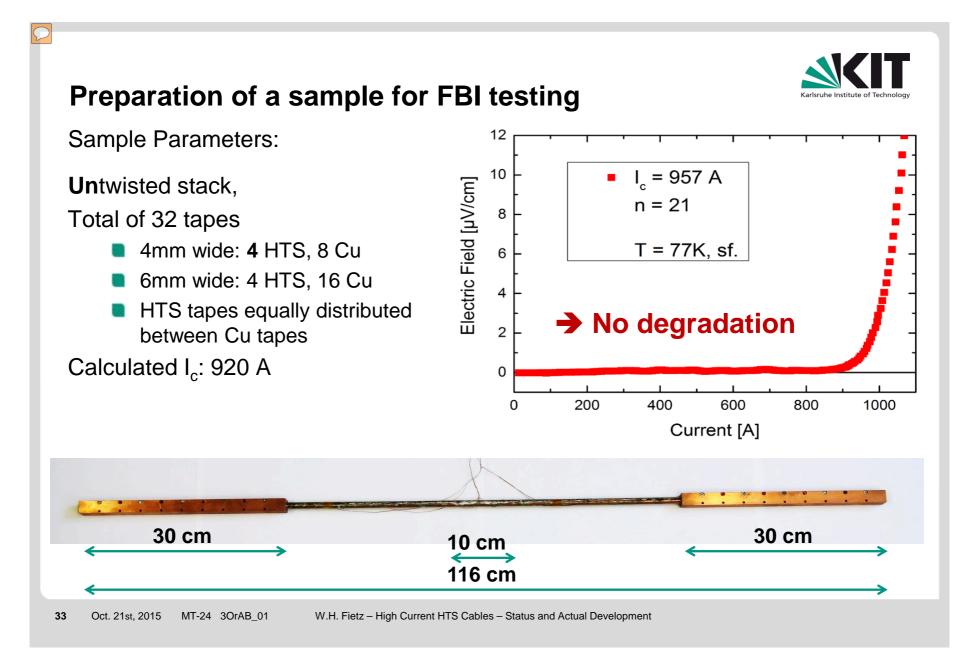

Mike Sumption et al. *IEEE Trans. Appl. Supercond.* 15 (2), (2005) p. 2815–2818

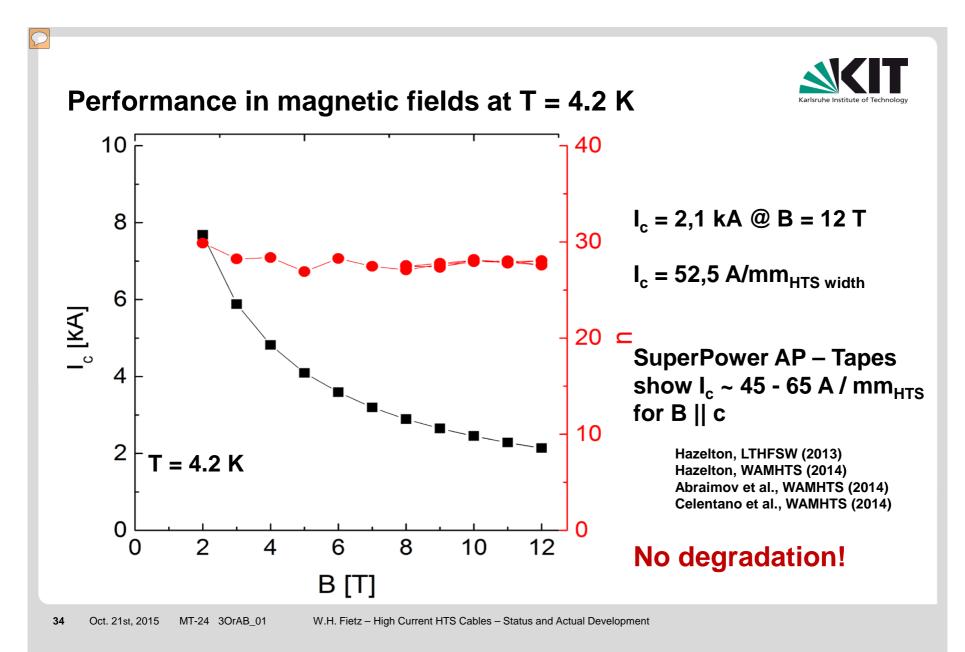
However, this is in contrast to the requests: Good twistability & easy manufacturing.

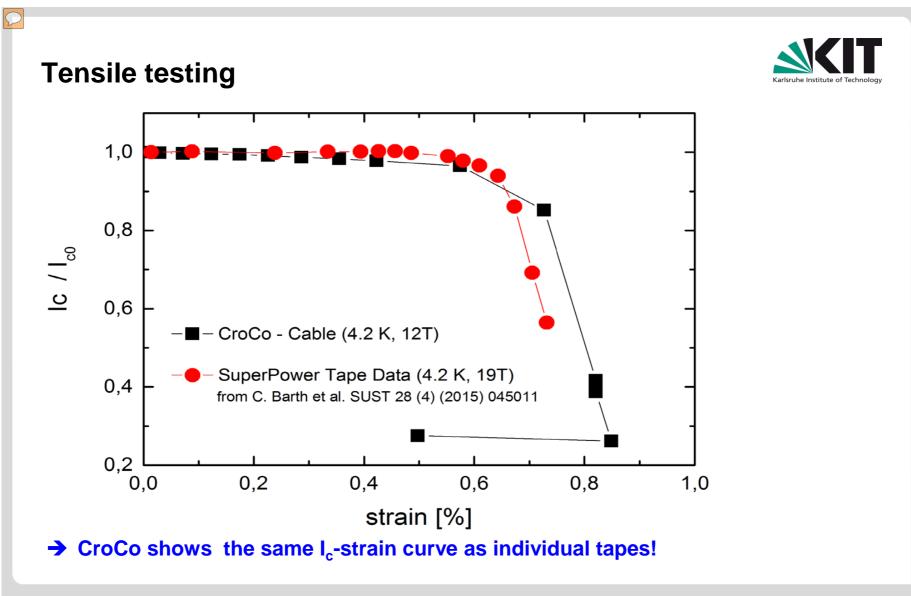
Therefore we propose a compromise between optimal twistability

optimal filling:

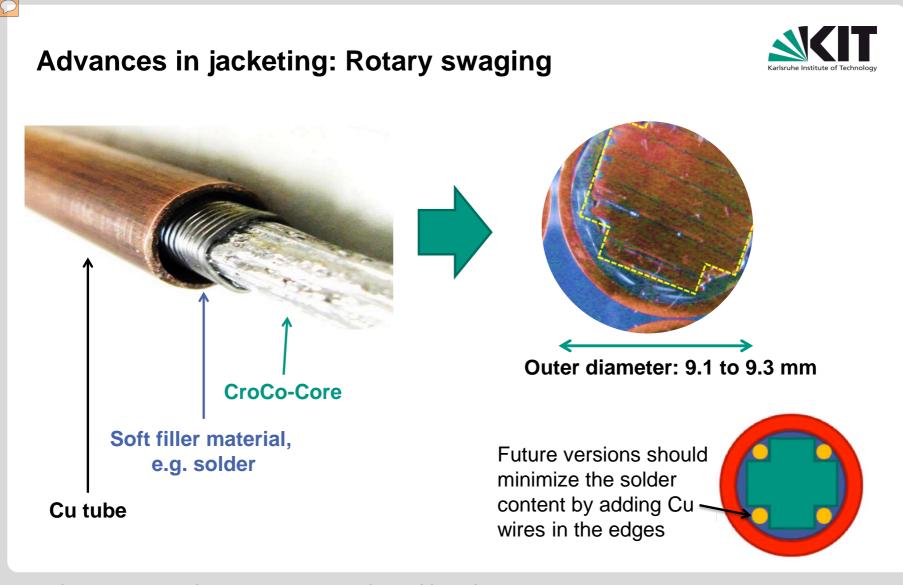
30 Oct. 21st, 2015 MT-24 30rAB_01 W.H. Fietz – High Current HTS Cables – Status and Actual Development

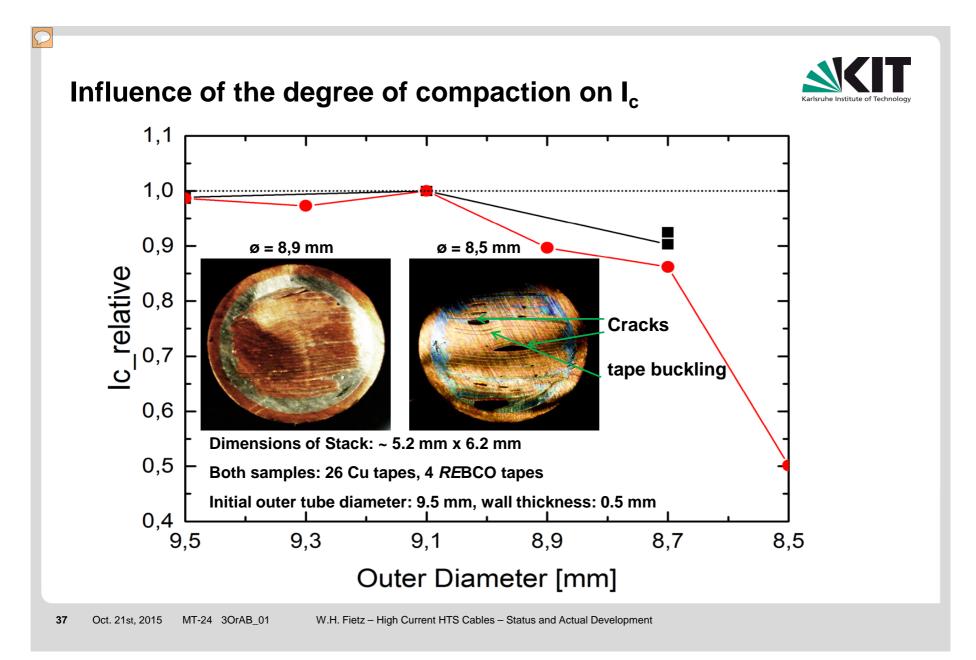






31 Oct. 21st, 2015 MT-24 3OrAB_01 W.H. Fietz – High Current HTS Cables – Status and Actual Development





35 Oct. 21st, 2015 MT-24 3OrAB_01 W.H. Fietz – High Current HTS Cables – Status and Actual Development

Performance of a single CroCo at 13.5 T and 4.2 K

CroCo (20x 6mm, 10x 4mm, 50 μm substrate)

Each tape is well stabilized with an envelope of 50 μm Cu !

	Parameter at 13.5 T and 4.2 K		SP A.P.	SP Enh. A.P.
	T_{2}	4mm	190 A	350 A
	Tape I _c (13.5 T, 4.2 K)	6mm	285 A	525 A
	I _c (kA)		7.6	14
	J _E (A/mm ²)		117	215.3

	I _c (kA)	8.5	15.6
CroCo with 30 µm substrate (23x 6mm, 10x 4mm)	J _E (A/mm²)	130	239.4

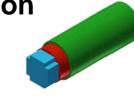
HTS-CroCo → Rutherford High Current Cable

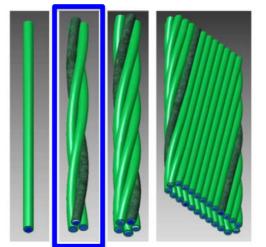
11 HTS-CroCos in a Stainless-Steel-Jacket

(each 20x 6mm + 10x 4mm tapes with 50 μ m

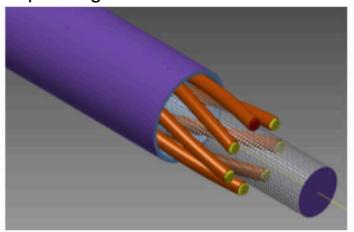
$\begin{array}{c} 1 \\ 1 \\ 23 \\ 35,5 \\ 1 \\ 1 \\ 54 \\ 66.5 \\ 66.5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Parameter at 13.5 T, 4.2 K		SP A.P.	SP Enh. A.P.
	Tane I	4mm	190 A	350 A
	Tape I _c	6mm	285 A	525 A
	Cable I_c with 11 CroCo		83.6 kA	154 kA
	Cable operating current*		55 kA	55 kA
	I _{op} / I _c		0.66	0.36
(30 μm substrate, 23x 6mm, 10x 4mm)	Cable I _c with 11 CroCo		93 kA	171 kA

Next step to thicker REBCO layers not included!

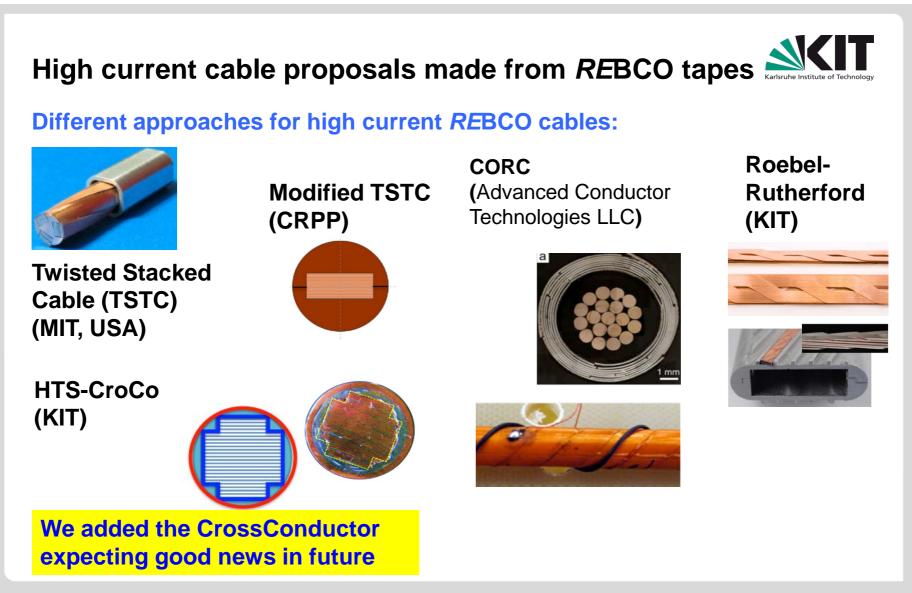

However, electric and mechanical stabilization is crucial, QD may be critical!


* R. Heller et al., MT24 3PoBB_03

"Conceptual Design Improvement of a Toroidal Field Coil for EU DEMO using High Temperature Superconductors"


HTS-CroCo Application

Highest current density e.g. for high field magnets


High current transport e.g. for power transmission (3 kA/CroCo @ 77 K, 30 kA/CroCo @ 4 K, depending on cross-section of the outer tube)

Results on such a HTS-CroCo - Triplet and more see poster 3PoBD_10 by M. Wolf et al. this afternoon

40 Oct. 21st, 2015 MT-24 30rAB_01 W.H. Fietz – High Current HTS Cables – Status and Actual Development

Summary

Highlighting: HTS Tape Property Progress Impressive multiple progress / opens new ways / 30 K?

Overview: High Current HTS Cable Proposals Numerous good high current HTS cable proposals, each one with special highlights

Optimizing: HTS-CroCo Based on the CRPP round strand **adds higher j_E, mechanical stability and easy fabrication incl. twist**

Outlook: Consequences using improved tapes Great perspectives, but electric and mechanical stabilization crucial, QD may be critical!

Many Thanks for allowance to use their HTS data to

- Dmytro Abraimov (NHMFL),
- Alexander Usoskin (Bruker)
- Venkat Selvamanickam (University of Houston)

Many Thanks for support with slides to

- Makato Takayasu (MIT)
- Giuseppe Celentano (ENEA)
- Nagato Yanagi (NIFS)
- Danko van der Laan (Advanced Conductor Technologies)
- Anna Kario (KIT)
- Davide Uglietti (Swiss Plasma Center / CRPP)

Many Thanks for good work and support for this presentation to

- Michael Wolf (KIT)
- Reinhard Heller (KIT)
- Alan Preuss (KIT)

Thank you for your attention !