

Water Cooled Resistive Magnets at CHMFL

GAO Bing Jun

High Magnetic Field Laboratory of the Chinese Academy of Sciences

MT 24, Plenary Session 6, Seoul, Korea

2015-10-22

- 1. Brief Introduction of CHMFL
- 2. Water Cooled Resistive Magnets at CHMFL
- 3. Summary
- 4. Perspective
- 5. Acknowledgement

1. Brief Introduction of CHMFL

G.I. Kuang, B.J. Gao, Y.H. Zhang, N. Qiu, X.N. Liu, X.D. Zhang, Z.R. Ouyang,

Z.C. Wu, Q.L. Wang, Q.Y. Lu, J.F. Wang, K. Zhong, W.G. Chen, L. Pi

- The Steady High Magnetic Field Facility (SHMFF) was founded by the National Development and Reform Commission of China (NDRC) in 2008;
- The Project is undertaken by the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL).

Where is CHMFL?

Science Island

Anhui Province

P. R. China

Science Island ---- a very beautiful peninsula! Area: 2.6 km2

Layout

A. power supply modules Installations

Configuration of the Power Supply System

Two modules

highest output power

28MW (40kA×700V)

The specifications for each module:

Rated output current **Ripple and noise** Stability(4 hours) Efficiency

Rated output voltage 500 V, 600V, or 700V 20 kA **10 ppm 10 ppm** >90%

8

B、Water cooling system

Flow Chart

B、Water cooling system

Main Parameters

Water resistivity at magnet entrance	≥15MΩ·cm
Dissolved O ₂ content in Magnet loop	≤10ppb
Magnet loop max flow	860m ³ /h
Max water pressure at magnet entrance	3MPa
Water temperature at magnet entrance	10°C
Max water temperature at the export of magnet	40° C
Max taken heat energy	20MW / 28MW
Refrigeration power of the chillers	8MW
Chilled water storage power	70MW
Continue run time in 20 MW heat energy case	≤6 hour / day

B、Water cooling system

APPLICATION

RECOVERY

CONTROL

LIQUEFACTION

COMPRESSION

C. Helium Cryogenic System

Technical Characteristics

Liquefaction rate	> 110 L/h@1.3 bar
Refrigeration	> 360 W@4.5 K
Recovery compressor	75 m³/h
Helium gas storage	6100 m ³
LHe storage	6600 L
LN2 storage	30 m ³

C. Helium Cryogenic System

Water Cooled Resistive Magnet Facility

Cell 1: WM1 Magnet Facility 38.5 T, 32 mm

Cell 2: WM2 Magnet Facility 25 T, 50 mm, 50 ppm

Cell 3: WM3 Magnet Facility 19.5 T, 200 mm

Cell 4 : WM4 Magnet Facility 27.53 T, 32 mm

Cell 5: WM5 Magnet Facility 35 T, 50 mm

SM1 8-T Superconducting Split Magnet System

✓ Configuration

The magnet is composed of six NbTi low temperature superconducting coils, which generate 5.5-T central magnetic field and two Bi2223/Ag high temperature superconducting (HTS) insert coils, which generate 2.5-T central magnetic field and assembled in the form of split coil groups. The Magnet has a 136-mm split gap to accommodate the crossing warm bore of 100 mm in diameter. The magnet system is cooled by two GM cryocoolers.

Magnet

SPECIFICATIONS of SM1

Magne	et Diameter	Inne Oute	r 134 mm er 596 mm	0	perati Curren	ng it	HTs Coil NbTi Coil	20 13	00A 36A	
Centra	I Magnetic	Field B0	8 T	to	red En	ergy	1	.38 M	J	
	Coils									
	Conductor Material	Wire Size (mm)	Insulation	lc (A)	I.D (mm)	O.D (mm)	Height (mm)	Total turn	Current density (A/mm ²)	
1#-2#	Bi2223/Cu	4.3×0.27	kapton (145 (s.f,77	140 K)	274	180	5236	94.73	
3#-4#	NbTi/Cu	1.0×1.46	Formvar (1400 5T,4.2I	290 K)	332	180	2074	77.05	
5#-6#	NbTi/Cu	0.8×1.37	Formvar (1100 5T,4.21	346 K)	407	200	4388	89.81	
7#-8#	NbTi/Cu	0.78×1.38	Formvar (1000 5T,4.2I	421 K)	503	220	6558	100.73	

IEEE tran. Applied Superconductivity, Vol. 22, No. 5, October 2012, 4705907

M3--Biomolecular NMR Instruments

Type: Bruker

600 MHz × 2

850 MHz

500 MHz

400 MHz

In operation: 2010

Focuses: Macromolecular structure determination, metabolism and drug screening.

SM4---9.4 T MRI

Field Strength:9.4 TBore size:400 mmGradient:100/300/2000 mT/mRF Channel:8 Tx / 16 RxIron Shield:120 ton

Unified MRI-animal Facility

2. Water Cooled Resistive Magnets at CHMFL

B.J. Gao, L.R. Ding, Y. Zhang, Z.J. Wang, J. Li, J. Su

Magı	net	goal	Des	sign	Test result and date				
No.	Bore	Field	Field	Current	Field	Current (A)		Unif. Date	
	(11111)	(')		(/)	(')	(7 ()	(10100)	(ppm)	
WM4	32	26	27.74	19800	27.53*	* 19700	9.98	1232 130903	
WM2	50	25	25.02	32825	25.04	32910	15.0	64 150617	
WM3	200	19.5	19.94	39650	19.556	39500	18.8	149 151016	
WM1	32	33.	38.505	5 37710	38.1			140520	
					38.51'	** 37938	25.3	582 150616	
WM5	50		35.05	36820	35.02*	* 36820	24.12	426 140423	
HWM11	32	29/40	33/44	25.4	to be t	esting in	the sprin	g next year	
HWM12	50	26/37	30/41	25.5					

(1) History -1

Institute of Plasma Physics, CAS, Hefei, China

1984-1992

A Project of CAS -- 20 T Hybrid Magnet Facility

May 23, 1992 HM 20.02 T, 32 mm HWM 12.59 T, 32 mm HSM 7.53 T, 266 mm

Proceeding of 9th International Conference on Magnet and Technology, Zurich, Sept. (1985), 223-225.

• Insert of 20 T Hybrid Magnet, HWM First Water Cooled Magnet in China

Inner Diameter38 mmOuter Diameter224 mmHight143 mmConductorGlidcopPower3.0 MWCurrent11444 AField13.5 T

(1) History -2 NHMFL, FSU, USA

August 1992—July 1995 & May 1996—June 1997, GAO Bing Jun was invited by Jack and Hans, to join the team of water cooled resistive magnet.

We invented :

A new concept of Bitter disk design IEEE tran. On Magnetics, vol. 32, No. 4, 1996, pp 2503-2506 Florida Bitter

Florida Bitter Facilities at NHMFL

- WM 27 T, 32 mm, 35 kA,13 MW, June 1994, New World Record
- WM 30 T, 32 mm, 35 kA,15 MW, March 1995, New World Record
- WM 33 T, 32 mm, 39.2 kA,19 MW, Feb.1996, New World Record
- HM 45 T, 32 mm / 31T, 66.6 kA +14T, 616 mm, Jan. 2000, **New World Record** 45 T, 32 mm / 33.6T, 72.2 kA +11.4T, 616 mm, Feb. 2001

First Magnet /3 coils / 27T Magnet First Florida Bitter Coil A, 30 T magnet IEEE tran. On Magnetics, vol. 32, No. 4, 1996, pp 2444-2449

(1) History -3 Institute of Plasma Physics & Institute of Solid State Physics

CAS, Hefei, China

• 2000-2005

A Project of CAS---R & D of Quasi-Static Mag. Field Tech.

20 T, 32 mm 12.5 T / 32 mm + 7.5 T / 266 mm 25 T, 32 mm 17.5 T / 32 mm + 7.5 T / 266mm

 WM4 Magnet 32 mm bore **Bitter Disks Three Coils Inner diameter** 38 mm **Outer diameter** 610 mm

Parameters of WM4 Magnet

Coil	А	В	С	Magnet
Inner Radius (mm)	19.0	56.0	115.0	19.0
Outer Radius (mm)	54.0	112.0	305.0	305.0
Height (mm)	153.1	283.2	503.8	
Conductor	CuAg	Cu	Cu	
Conductivity (%IACS)	75	98	98	
Current (A)	19700	19700	19700	19700
Field (T)	10.55	8.17	8.88	27.60
Power (MW	2.26	2.60	4.71	9.57
Number of Turns	45/16	65/28	113/88	
Thickniss of Turn (mm)	1.8905/ 3.7810	2.2458/ 4.4916	1.6396/ 3.2792	
Uniformity (ppm)				1180

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

• WM4-C Coil Stacking

• Coils A,B,C of WM4 magnet

Calibration of the Magnetic Field by Nuclear Magnetic Resonance

• WM2 Magnet, 50 mm bore 50 ppm,for MR

Bitter disks Three Coils Inner diameter 70 mm Outer diameter 610 mm

Parameters of WM2 Magnet

Coil	Α	В	С	Magnet
Inner Radius (mm)	35.0	72.0	115.0	35.0
Outer Radius (mm)	70.0	112.0	305.0	305.0
Height (mm)	254.8	365.9	497.1	
Conductor	CuAg	Cu	Cu	
Conductivity (%IACS)	76.5	98	98	
Current (A)	32825	32825	32825	32825
Field (T)	8.91	6.76	9.33	25.0
Power (MW)	4.88	4.24	5.51	14.62
Number of Turns	14/48	67	124/12	
Thickniss of Turn (mm)	4.416/ 3.864	5.338	3.222/ 6.444	
Uniformity (ppm)				1.41

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

Coils A,B,C of WM2 magnet

(3) WM3 magnet, 200 mm bore

Bitter Disks Four Coils Inner diameter 200 mm Outer diameter 1000 mm

Parameters of WM3 Magnet

Coil	A1	A2	В	С	Magnet
Inner Radius (mm)	107.6	128.4	166.4	227.0	107.6
Outer Radius (mm)	127.6	163.4	224.0	500.0	500.0
Height (mm)	512.4	572.6	611.4	644.2	
Conductor	Cu	Cu	Cu	Cu	
Conductivity (%IACS)	98.	98.	98.	98.	
Current (A)	39650	39650	39650	39650	
Field (T)	2.49	3.71	5.43	8.34	19.94
Power (MW	1.52	2.76	5.94	8.94	19.16
Number of Turns	56/10/2	43/14/2	49/20	96/48	
Thickniss of Turn (mm)	6.000/ 12.000/ 24.000	6.808/ 13.616 27.232	6.774/ 13.549	3.262/ 6.524	

Uniformity (ppm)

177.

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

Coils A,B,C,D of WM3 magnet

(3) WM1 / WM5 Magnets

• WM1 magnet 32 mm bore **Bitter Disks Four Coils Inner diameter** 38 mm **Outer diameter** 1000 mm

Parameters of WM1 Magnet

COI	Α	В	С	D	Magnet
Inner Radius (mm)	19.0	60.0	114.0	227.0	19.0
Outer Radius (mm)	58.0	112.0	224.0	500.0	500.0
Height (mm)	249.3	371.4	550.5	653.5	
Conductor	CuAg	CuAg	Cu	Cu	
Conductivity (%IACS)	70.0	70.0	98.0	98.0	
Current (A)	37710	37710	37710	37710	37710
Field (T)	10.98	10.56	10.32	6.64	38.505
Power (MW)	2.69	8.32	8.44	5.63	25.08
Number of Turns	33/4/2/2	69/2/2/2	85/36	105/20	
Thickniss of Turn (mm)	3.7661/ 7.5322/ 15.0644/ 30.1288	1.0721/ 4.2886/ 8.5771/ 17.1542	3.411/ 6.822	4.4/8.8	
Uniformity (ppm)					467

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

• Bitter Disk of WM1-D Coil

HERE STATE STATE

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. Plenary presentation 4PL_02 given at MT24; Seoul, Korea, October 18 to 23, 2015.

• Stacking of WM1-D coil

Coils A,B,C,D of WM1 magnet

51

• WM5 Magnet, 50 mm bore

Bitter Disks Four Coils Inner diameter 56 mm Outer diameter 1000 mm

Parameters of WM5 Magnet

Coil inner Radius (mm)	A 28.0	B 67 0	C 114 0	D 227 0	Magnet
Outer Radius (mm)	65.0	112.0	224.0	500.0	500.0
Height (mm)	237.7	340.0	550.5	653.5	
Conductor	CuAg	CuAg	Cu	Cu	
Conductivity (%IACS)	70.0	70.0	98.0	98.0	
Current (A)	36820	36820	36820	36820	36820
Field (T)	9.52	8.97	10.08	6.49	35.052
Power (MW)	3.10	7.23	8.10	5.34	23.87
Number of Turns	35/6/2	60/2/2/2	85/36	105/20	
Thickniss of Turn (mm)	4.2255/ 8.4510/ 16.9020	4.2550/ 8.5101/ 12.7651/ 17.0202	3.411/ 6.822	4.4/8.8	

Uniformity (ppm)

415

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

• Coils A,B,C,D of WM5 magnet

Insert of Hybrid Magnet, HWM11

Bitter Disks Six Coils Inner diameter 38 mm Outer diameter 710 mm

Parameters of HWM11 Magnet

Coll	Α	В	С	D	E	F	Magnet
Inner Radius (mm)	19.0	49.0	81.0	114.0	178.0	246.0	19.0
Outer Radius (mm)	47.0	79.0	112.0	175.0	243.0	350.0	350.0
Height (mm)	367.6	514.2	646.1	640.9	658.0	659.0	
Conductor	CuAg	CuAg	CuAg	Cu	Cu	Cu	
Conductivity (%IACS)	70.0	70.0	70.0	98.0	98.0	98.0	
Current (A)	38600	38600	38600	38600	38600	38600	
Field (T)	7.63	6.25	4.98	4.54	4.12	5.49	33.00
Power (MW)	2.24	4.09	4.74	2.70	3.64	7.92	25.35
Number of Turns	33/2/2/2	43/2/2/2	48/2/2	55/2/2	57/2/2	95/2	
Thickniss of Turn (mm)	5.962/ 11.924/ 23.848/ 47.696	7.154/ 14.309/ 28.618/ 57.235	8.883/ 17.766/ 35.532/ 53.298	9.457/ 18.914/ / 37.828	9.427/ / 18.854 37.709	/ 6.282/ / 25.126 9	6
Uniformity (ppm)							127

"Water Cooled Resistive Magnet at CHMFL", to be published in IEEE on Applied Superconductivity 2016 June

Coils A,B,C,D,E,F of insert of hybrid magnet

Continuous imaging in decreasing field

27 T I

0 T

3. Summary

- All completed water cooled magnets of the CHMFL have been presented;
- High magnetic fields up to 38.5 T can be used for our users;
- A hybrid magnet will be completed and will be tested in the early next year;
- Now we are dedicated to improving the experimental conditions for users;
- We have been accumulating experience in resistive magnet operation and protection.

4. Perspective-1

- Water cooled resistive magnets still the only way to generate the highest continuous magnetic fields;
- It combines with outer superconducting magnet to generate higher fields;.
- We should generate the fields of both magnets, water cooled resistive magnet and outer superconducting magnet of hybrid magnet, as high as possible;

4. Perspective-2

Next targets of higher field for water cooled resistive magnets could be:

- 1) 41-42 T with 28 MW;
- 2) 46 T with 42 MW, may be more;
- 3) 50 T with 56 MW, may be more.

• The corresponding fields for hybrid magnets would be:

- 1) 46 48 T;
- 2) 55 T;
- 3) 60 T.

5. Acknowledgment

This work was supported in part by the National Development and Reform Commission of China and in part by the Chinese Academy of Sciences.

I want to thank my colleagues and their contribution on power supply, water cooling and control system.

I also want to thank Dr. Schneider-Muntau for interesting discussions.