5th International Conference on Superconductivity and Magnetism (ICSM 2016)

April 26, 2016, @Fethiye, Turkey

Potentials of HTS Superconducting Materials for Extensive Applications

Jun-ichi Shimoyama

Aoyama Gakuin University, Sagamihara, Japan

OUTLINE

- 1. What are needed for superconducting materials?
- 2. Current HTS materials partly supported by basic studies
 - · BSCCO Tape
 - RE123 Coated Conductors
 - RE123 Melt-solidified Bulks
- 3. Potentials of new candidate materials; iron-based superconductors
- 4. Recent my anxiety

History of superconducting materials with changes of record-high *T*_c

Applicable conditions of superconducting materials

Required *J*_E depends on applications.

eg. MAGLEV train

by Central Japan Railway

eg.: transmission cable

by Sumitomo Electric Industries

Superconducting magnet using Nb-Ti $J_E > 400 \text{ A/mm}^2 (4.2 \text{ K}, \sim 5 \text{ T})$

+ persistent current circuit

to obtain large force for levitation and running with light magnet system

HTS high-T_c cable

*J*_E > 100 A/mm² (77 K, ~0.1 T)

Yokohama, Oct 2012~

Generic Concept of Metallic Superconductors with High J_c

Strong pinning centers with moderate density

in

strong superconducting matrix

numerous studies for introduction of pinning sites

atomic defects

dislocations

fine non-superconducting Precipitates (α-Ti in Nb-Ti)

grain boundaries (Nb₃Sn, MgB₂)

irradiation damages

numerous studies for achieving high T_{c} and high H_{c2}

choosing best composition (alloy)

controlling chemical composition to the ideal (=integral) ratio (inter-metallic compounds)

doping to improve microstructure, *H*_{c2} and/or workability

Crystal Structures of Representative Metallic Superconductors

simple, highly symmetric, with a few constituent elements

Characteristic Crystal Structure of Cuprate SC

layered cuprates (containing various sites of cations and anions) in which most of superconducting carriers spread along the CuO₂ plane

complex, highly anisotropic with $d_{x^2-y^2}$ symmetry, many elements, large nonstoichiometry (cation and oxygen)

Characteristic Crystal Structure of Cuprate SC

layered cuprates (containing various sites of cations and anions) in which most of superconducting carriers spread along the CuO₂ plane

complex, highly anisotropic with $d_{x^2-y^2}$ symmetry, many elements, large nonstoichiometry (cation and oxygen)

Is this a crystal structure of actually existing compound?

 \mathcal{O}

Large Cation Nonstoichiometry in Bi2212

Bi-rich & Sr-poor composition is stable ! --- Bi and Ca substitute for Sr

Majewski, Supercond Sci. Technol. 10 (1997) 453.

Generic Concept of Cuprate Superconductors with High J_c

Strong pinning centers with moderate density

in

strong superconducting matrix

numerous studies for introduction of pinning sites to improve J_c -B characteristics and H_{irr}

atomic defects

twins

dislocations

fine non-superconducting precipitates

locally weak superconducting regions by element substitutions or nonstoichiometric cation composition

irradiation damages

numerous studies for improving grain alignment J_c (77 K, s.f.) *c*-axis alignment --- < 10⁵ Acm⁻² bi-axial alignment --- > 10⁶ Acm⁻²

decreasing anisotropy improving conductivity at blocking layer by carrier overdoping and/or cation substitutions

Few studies on precise control of nonstoichiometric cation compositions (unintentional)

homogeneous chemical
composition without siteQuite
Difficult !exchange between cations

Structure of RE123 and Bi(Pb)2223 tapes

Improvement of properties = enlargement of application fields and decreasing cost

Bi(Pb)2223 tape (Ag-sheathed)

J_c ~2 x 10⁶ A /cm² at 77 K Thin and mono superconducting layer Ratio of RE123 layer : 1~3% Increases in thickness and J_c of SC layer

 $J_{\rm c} \sim 6 \ge 10^4 \text{ A /cm}^2 \text{ at 77 K}$ Multi-filament (55~121 filaments)

Ratio of Bi(Pb)2223 filament: ~40%

Increases in $J_{\rm c}$ of SC layer and mechanical strength

History of $I_c \ge L$ values of high- T_c superconducting tapes

At present, $I_c \ge L$ index is becoming less important. The yield rate of long length tapes is more essential.

Critical Current Properties of HTS Materials (at 77 K)

These values are much lower than the pair breaking current density >10⁸ Acm⁻².

Bi2223 Tapes (BSCCO)

Recent BSCCO Tapes: Updated Type HT-NX

Specifications	New release!			
	Туре Н	Type HT-SS	Type HT-CA	Type HT-NX
Average Width	4.3+/-0.2mm	4.5+/-0.1mm	4.5+/-0.1mm	4.5+/-0.2mm
Average Thickness	0.23+/-0.01mm	0.29+/-0.02mm	0.34+/-0.02mm	0.31+/-0.03mm
Reinforcement tape	_	Stainless steel (0.02mm ^t)	Copper alloy (0.05mm ^t)	Nickel alloy (0.03mm ^t)
Ic (77K, Self Field)	170A, 180A, 190A, 200A			
Critical Wire Tension * (RT)	80N **	230N **	280N **	410N **
Critical Tensile Stress * (77K)	130 MPa **	270 MPa **	250 MPa **	400 MPa **
Critical Tensile Strain * (77K)	0.2% **	0.4% **	0.3% **	0.5% **
Critical Double Bending Diameter * (RT)	80mm **	60mm **	60mm **	40mm **

* 95% Ic retention, * * Typical value

✓ The tensile strength of Type HT-NX is 1.5 times higher than those of Type HT-SS and Type HT-CA

✓ Type HT-NX has released since April, 2015

✓ Max. 200 m Type HT-NX is available unit length for shipment now

SUMITOMO ELECTRIC

Recent BSCCO Tapes: Updated Type HT-NX

Ic and n-value distributions

- \checkmark I_c and *n*-value are very uniform over the whole wire length
- ✓ The present available Type HT-NX is 200 m
- ✓ More than 500 m Type HT-NX is being experimentally produced now
 → Next target unit length: Max. >500 m (in near future)

Recent BSCCO Tapes: Updated Type HT-NX

Results of mechanical tests

① Tensile test at 77 K

② Bending test at RT

Recent BSCCO Tapes: Updated Type HT-NX

Robustness of mechanical properties

113 wires of Type HT-NX with over 100m have already produced.

✓ After removing the stress, *I_c* of all the wires was recovered up to 99%
 →No filament fracture under the tensile stress of 400 MPa at 77 K
 ✓ *I_c* maintained 98% under the bending diameter of 40mm at RT

SUMITOMO ELECTRIC

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Plenary presentation at ICMS 2016, Fethiye, Turkey, April 24 to 30, 2016. Not submitted for journal publication.

Recent BSCCO Tapes: Updated Type HT-NX

in-field I_c and J_e at 4.2 K

*Measured by NIMS @ LNCMI/Grenoble for Type H, NHMFL/Florida for Type HT-NX

- ✓ *I_c* of Type H and Type HT-NX are same down to low temperature (4.2K).
- ➔ The lamination never affects the original Type H wire's in-field I_c.
- **SUMITOMO ELECTRIC**

✓ J_e at 4.2K and normal field
 ~300 A/mm² at 15T
 ~275 A/mm² at 20T
 ~250 A/mm² at 25T
 ~235 A/mm² at 30T

Recent BSCCO Tapes: R&D ~ new splice

Resistance of new splice Type HT-NX

✓ The splice resistance of Type HT-NX decreased by 84 % for splice A, resulting in the comparable value of Type HT-CA

How physical properties of Bi2212 single crystal change with cation composition?

Samples : Bi2212 single crystals grown by FZ

nominal composition Bi : Sr : Ca : Cu	atmosphere during crystal growth
2.0 : 2.0 : 1.0 : 2 gr	1% or 5%O ₂ own more than 15 boules
2.1 : 1.9 : 0.9 : 2	air
2.1 : 1.8 : 1.0 : 2	air
2.1 : 1.7 : 1.1 : 2	air
2.1 : 1.5 : 1.3 : 2	air

growth rate = 0.25~0.3 mm / h

two-step post annealing

at ~800°C in air for 72 h --- improving compositional fluctuation of cations at <800°C in various P_{02} and quenching --- control of oxygen content

Change of In-Plane Anisotropy of Bi2212 with Cation Composition

Makise et al., Physica C 460-462 (2007) 772.

cation stoichiometric Bi2212 --- large ρ_b / ρ_a , low ρ_c

due to elimination of lattice distortion

Cation Composition Dependent λ_{ab} of Bi2212

First Order Transition of Vortex System of Cation Stoichiometric Bi2212

Stoichiometric Cation Ratio Gives the Best J_c

Bi2212 single crystals

Vortex Phase Diagram of Bi2212 (H // c)

Strong Pinning Observed in Cation Stoichiometric & Carrier Concentration Controlled Bi2212

Bi2212 Single Crystals with Bi:Sr:Ca:Cu ~ 2:2:1:2

* different crystal boule

Carrier optimally-doped crystal exhibited record-high *J*_c-*B* properties!

Enhancement of T_c in Bi(Pb)2223

T_c Map of Bi2223 Tapes

Shimoyama et al., Jpn. J. Appl. Phys. 44 (2005) L1525-L1528.

Origin of Enhanced T_c of Bi(Pb)2223

Partial substitutions of Bi and Ca for Sr-site is suppressed by post annealing.

DI-BSCCO has improved microstructure, cation composition and optimized carrier doping state for each application

RE123 Materials

Coated Conductors

Melt-Solidified Bulks

Recent RE123 Coated Conductors

50 m long BaZrO₃ doped GdBCO wire

Tapestar® measurement

Recent RE123 Coated Conductors

Enhanced J_c for BHO doped GdBCO

with APC 16 MA/cm² (30 K, 2 T)

> x2~3

non APC 6 MA/cm²

Twice or further high J_c compared to non-doped wire at low temp.

Recent RE123 Coated Conductors

*I*_c properties in high magnetic fields

Sample : GdBCO + BHO (thickness : 1.2 μm)

* This work includes some data measured at High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University.

Simple way to increase I_c and J_e

Problem of RE123: RE substitution for Ba

Pr eats (attracts) hall carriers.

Ce forms BaCeO₃.

Tb forms BaTbO₃, while it can form Tb(Sr)123.

Carrier Doping State and Superconductivity of Nd-rich Nd123

Nominal carrier density is unchanged by Nd composition.

 $T_{\rm c}$ is essentially decreased by Nd substitution for Ba.

- -- structural deformation
- -- ineffective carrier doping

weak superconducting matrix

Deteriorated Critical Current Properties of Nd123 Single Crystals by Excess Nd

 $Nd_{1+x}Ba_{2-x}Cu_3O_y$

Maruyama et al, M²S-HTSC VII (2003)

RE Substitution for Ba Site in Dy123 and Ho123

from http://ikebehp.mat.iwateu.ac.jp/database.html

low thermal conductivity --- lattice deformation

analyzed composition: Dy_{1.02}Ba_{1.98}Cu₃O_y

Comparison of $F_{\rm p}$ of Gd123 and Y123 Single Crystals

Ishii et al., IEEE Trans. Appl. Supercond. 19 (2009) 3487-3490.

Y123 single crystals show better performance than Gd123 at low temperatures. Dilute impurity doping enhances J_c .

Concept of Dilute Doping

e.g. Zn-substituted RE123 bulk Krabbes et al., *Physica C* 330, 181 (2000).

conducting matrix

RE-Mixed RE123 Melt-Solidified Bulks; (RE'RE"123)

Setoyama et al., Supercond. Sci. Technol., 28 (2015) 015014

Dilute Doping for Cu in CuO Chain of RE123 Melt-Solidified Bulks

Dilute doping for Cu in Cu-O chain is the universally effective method for enhanced J_{C} of RE123 system. (better than direct substitution for Cu in CuO₂ plane)

J_c-B Characteristics of Y123 Bulks at 40 K

Enhancement of J_c for Bi2212 Single Crystals by Pb-doping, Tuning of Cation Composition and Dilute Impurity Doping

Uchida et al., J. Phys. Conf. Series 43 (2006) 231-234.

Summary 1

Cation composition of cuprate superconducting materials should be the integral number ratio, 1:2:3, 2:2:2:3 etc..

- --- increase in superconducting condensation energy
- --- (dramatic) increase in pinning strength
- --- large enhancement of J_c particularly at low temperatures

RE123 : Cation composition is already close to 1:2:3.

But it is not exact 1:2:3.

- RE211 included (=RE-rich) melt-solidified bulks
- CC prepared under non-equilibium conditions, PLD
- Bi2223 : Cation composition is not well-controlled particularly for long length tapes.
 - Adjusting 2:2:2:3
 - increase in Pb-concentration

Large rooms are remaining for enhancement of J_c .

Iron-Based Superconductors

122 phase

Crystal Structures of Iron-Based Superconductors

- basically tetragonal with long *c*-axes including one Fe plane (*ab*-direction)
- large structural variation at blocking layer
- multi-band superconductivity

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Plenary presentation at ICMS 2016, Fethiye, Turkey, April 24 to 30, 2016. Not submitted for journal publication.

$T_{\rm c}$ of iron-based superconductor is

sensitive to local crystal structure at Fe*Pn* or Fe*Ch*, symmetry, anion height and Fe-Fe distance

not much sensitive to the carrier concentration (Wide T_c plateau often appears in the T_c vs x diagram.)

always deteriorated by impurity substitution for Fe.

Intrinsic T_c of Fe₂As₂ monolayer is ~50 K at the most. Slightly higher T_c of 1111 compounds can be explained by some additional reasons.

Bulk superconductivity with high $T_c > 77$ K --- long shot

Practical applications < 30 K

122 System --- Small Anisotropy = Strong Grain Coupling

PIT method --- semi-closed tapes & wires \Rightarrow (AE,K)Fe₂As₂ can be used.

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Plenary presentation at ICMS 2016, Fethiye, Turkey, April 24 to 30, 2016. Not submitted for journal publication.

Rapid but Recently Sluggish Increase in *J***_c of 122 Tapes**

Comparison of Engineering *J***_c at 4.2 K**

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016. Plenary presentation at ICMS 2016, Fethiye, Turkey, April 24 to 30, 2016. Not submitted for journal publication.

Optimal K composition for T_c is not best for J_c in field.

Electron irradiation is effective to enhance J_c of (Ba,K)122

Most effective at $x = 0.35 \sim 0.40$, far from AFO state

Collaboration of AIST-UT-AGU

An example of improving J_c by control of doping level

Possible Application Condition of Iron-Based Superconducting Materials

More practical conditions for iron-based superconductors; high performance, long length, homogeneous, high productivity, low cost, etc.

Summary 2

My opinion on iron-based superconductors

No iron-based superconducting long tapes so far Does it need several years more?

Some breakthroughs must be indispensable. New technique besides purification and densification, what is?

Controls of chemical composition and grain orientation might contribute to improve absolute values and homogeneity of J_c of long tapes

We must understand;

how inhomogeneous in the superconducting state, how inhomogeneous superconductivity should be controlled.

These are common problems in superconductors and more serious in short ξ SC.