

Superconducting flux modulation machines for hybrid and electric aircraft

*R. Dorget^{1, 2}, S. Ayat¹, A. Cipriani³, J. Lévêque², J. Labbé¹, T. Lubin², M. Sitko³, J. Tanchon³, J. Lacapère³

- ¹Safran Tech, Electrical & Electronic Systems Research group, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France¹
- ²Université de Lorraine, GREEN, F-54000 Nancy, France²
- □ ³Absolut System, 2 Rue des Murailles, 38170 Seyssinet-Pariset, France³

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

- ✤ Agence Nationale de la Recherche (ANR)
- ✤ Agence de l'Innovation de Défense (AID)
- Direction Générale de l'Armement (DGA)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Climate impact of aviation

[1] B. Graver, D. Rutherford, and S. Zheng, "CO2 emissions from commercial aviation: 2013, 2018, and 2019," The international council on clean transportation, Oct. 2020
[2] Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., ... & Wilcox, L. J. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834.

Electric architectures

HTS & cryogenic technologies

- High temperature superconductivity (HTS) and cryogenic technologies can increase the specific power and efficiency of the powertrain
- Liquid hydrogen (LH2) (~20K) as auxiliary or primary fuel can overcome the main obstacle of HTS : the cooling

[3] Sivasubramaniam, K., Zhang, T., Lokhandwalla, M., Laskaris, E. T., Bray, J. W., Gerstler, B., ... & Alexander, J. P. (2009). Development of a high speed HTS generator for airborne applications. IEEE Transactions on applied superconductivity, 19(3), 1656-1661.
 [4] Chen, R., & Wang, F. F. (2021). SiC and GaN devices with cryogenic cooling. IEEE Open Journal of Power Electronics, 2, 315-326.

[5] Allais, A. (2022, June 14). Nexans is paving the way for a superconducting electric world. 8th International Workshop on Numerical Modelling of High Temperature Superconductors, Nancy.

[6] Grilli, F., Benkel, T., Hänisch, J., Lao, M., Reis, T., Berberich, E., ... & Dadhich, A. (2020, July). Superconducting motors for aircraft propulsion: the Advanced Superconducting Motor Experimental Demonstrator project. In Journal of Physics: Conference Series (Vol. 1590, No. 1, p. 012051). IOP Publishing.

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

Flux modulation machine

Flux modulation machine

- 3-phases AC synchronous
- Axial flux
- Air cored
- Brushless
- Inductor flux density controllable from the HTS coil

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

Project RESUM

REalisation of a SUperconducting Motor (RESUM):

- Partially superconducting 50 kW proof of concept built in summer 2019
- Rated values:

Project RESUM

EFATS ELECTRIC AIRGRAFT PROPULSION

• Inductor:

IG HTS coil (BiSrCaCuO)
HTS disk shaped bulks (YBaCuO)
Working temperature : 30 K

- Armature:
 - Copper Litz wire 20 AWG (Ø = 0.812 mm)
 Small back iron

Picture of the rotor

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

EFATS 2022 30-31 August 2022

FROST: Principle

- Flux-barrier ROtating Superconducting Topology (FROST): ♦ Started in 2020 ✤Partially superconducting demonstrator
- Project philosophy:
 - Change bulks shape
 - ♦ Change HTS coil material (Critical current x3)
 - ♦Add liquid cooling to the armature $(goal: 30 \text{ A/mm}^2)$
 - \rightarrow Unviable design as it stands

13

Parameter	RESUM	FROST (pre-sizing)
Ω	5000 tr/min	
Р	50 kW	373 kW
М	52 kg	42 kg
PtM	1 kW/kg	8,9 kW/kg
η	94 %	92,8 %
Ø	470 mm	470 mm

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

HTS bulks design

- Ring segment shaped bulks are machined from disks
 - Maximum available size commercially in single domain is Ø 100 mm
 - Bulk size has been reduced by 33 % because of this limit
- In 2022 : Ø 155 mm achieved by CAN [8]

CAN SUPERCONDUCTORS. Retrieved 23 March 2022, from https://www.can-superconductors.com/products.html Plechacek, J. (2021, December 1). 155 mm Ø GdBCO disk. CAN Superconductors. https://www.can-superconductors.com/155-mm-o-gdbco-disk/

5

Losses (W/cm²)

Losses in the coil cryostat

- The coil cryostat is manufactured in aluminum
 AC losses are generated in the cryostat wall
 Distance between rotor and cryostat must be increased to mitigate the losses
- Coil radius increased by 35 %

Eddy current losses in Litz wire

- Due to the absence of iron teeth :
 - The armature is subjected to the inductor field
 Eddy-current losses are generated in the amarture wires
- Litz wire with small strand size must be use
 - Reducing strand size mitigates the losses
 - Small strand Litz wire have a worse filling factor

```
♦ 20 AWG \rightarrow 28 AWG
```


Amarature's liquid cooling

- The limited filling factor of the Litz wire implies a low thermal conductivity (6,8 W/mK)
- The expected current density in the stator is 25 A/mm² instead of 30 A/mm²

Expected performances

Several limitations have reduced the expected performances

• Technical limitations:

Single domain REBaCuO bulk size

- Losses in cryostat wall
- ✤Litz wire small filling factor
- Difficulty to cool the stator
- Project issues:
 - Reduced budget for the coil purchase

✤Litz wire availability

Parameter	RESUM	FROST
Ω	5000 tr/min	
Р	50 kW	261 kW
М	52 kg	148 kg
PtM	1 kW/kg	1.8 kW/kg
η	94 %	95.3 %
Ø	470 mm	630 mm

- Introduction
- Flux modulation machine
- Prior works: Project RESUM
- Project FROST: Principle
- Project FROST: Design
- Project FROST: Construction

Rotor and bulks

- New cryogenic cooling for the rotor:
 - Bulks are cooled by an aluminum plate in between 2 bulks
 - ♦ The number of bulks has been doubled (5 pole pairs → 10 bulks total)

HTS coil

- Coil ordered from SHSTEC
 \$3420 m of HTS tapes
 - **◆**38.4 kg
 - HTS tapes: 13.5 kg
 - Copper: 16.7 kg
 - G10: 6.5 kg
 - Screws & bolts: 1.7 kg

Armature

- Winding completed
 \$\$10 kg per amarature
 - Litz wire: 2.7 kg
 - G11: 6.3 kg
 - Misc: 1 kg

- Full assembly of the demonstrator planned for 2023
- Rated power expected 261 kW
- Several options to further increase power:
 *Bulk size available commercially is increasing
 *High thermal conductivity Litz wire
 *Improvement in 2G HTS wire

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Thank you for your attention

e-mail: remi.dorget@safrangroup.com

Comparison of working modes

Comparison of the 3 modes:

- Mode (a): applied field of 1 T
- Mode (b): applied field of 1 T
- Mode (c): applied field of 0,5 T

Three modes are equivalent except for the average value

