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Abstract. In this paper we consider two different finite-element models for computing ac
losses in coils composed of coated conductors: a 2-D model based on solving Maxwell equations
by means of edge elements and a 1-D model based on solving the integral equations for the sheet
current density in the tapes. The models are tested for a configuration of practical interest, a
non-inductive solenoidal coil for fault current limiter applications. We focused our attention on
the conditions when differences between the two models are expected to emerge, for example
when the tapes are closely packed together or where the dependence of the critical current
density on the local magnetic field is taken into account. We present and discuss several cases,
offering possible explanations for the observed differences of ac loss values.

1. Introduction

Finite-element method have proved to be a powerful tool for computing ac losses in high-
temperature superconductor (HTS) tapes and assemblies [1]. The choice of the model to be
utilized for designing low loss devices may depend on several factors, including accuracy and
computation speed. Recently, we have focused our attention on a 1-D approach to simulate
second-generation HTS tapes: being much faster than standard 2-D models, it can be attractive
for optimizing the design of HTS device, when a large number to simulations has to be carried
out, in order to investigate the influence of the various parameters. Whereas the 1-D model,
which by its nature cannot consider the variation of electromagnetic quantities across the tape’s
thickness, has proved to provide identical results to those of the 2-D model in the case of
an isolated tape, it has still to be investigated if this good agreement is preserved in situations
when the interaction between neighboring tapes is particularly strong, e.g. when they are closely
packed together.

In this paper, we compare the 1-D and the 2-D models in the case of a non-inductive “tape
arrangement”, focusing on the situations where difference between the two models start to appear
and on their causes. The geometry of a non-inductive solenoid can be utilized for fault current
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limiter applications [2, 3]. It is characterized by closely packed, electromagnetically interacting
tapes, and it is therefore ideal to investigate the differences between the two models.

2. Geometry and numerical models

We consider the internal part of the solenoid corresponding to most of the tape turns, where the
end effects do not play an important role. This allows us to focus on the difference between the
two models. A schematic view of the geometry is given in figure 1, where the two superposed
tapes (carrying opposite currents) are representative of each layer. Due to the symmetry of the
geometry, only one ‘periodic cell’ needs to be simulated. Lx is the size of this periodic cell,
which accounts for the width of the tape and the lateral gap between the turns. The inter-layer
separation is given by Lz.
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Figure 1. Cross-section of two superposed tapes representing the periodic cell of an anti-
inductive solenoid. The colored area represents the area simulated in the 2-D model. On
the AB, BC, and DA domain boundaries the Dirichlet condition Hy=0 is applied; on the CD
boundary the Neumann condition is applied. The +/− signs indicate that the current flows in
opposite direction in the two layers (in and out of the page). Not drawn to scale.

The utilized models have been described in two previous works of ours [4, 5]: the 2-D model
solves Maxwell equations by means of edge elements; the 1-D model considers the coated
conductor as infinitely thin and solves (by finite elements) the following integro-differential
equation for finding the sheet current density J(x, t):

ρJ(x, t) =
µd

2π

a
∫

−a

J̇(ξ, t)

[

ln sin
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−
1

2
ln

(

cosh
2πLz

Lx

− cos
2π(x − ξ)

Lx

)]

dξ, (1)

where a is the half width of the tape, d its thickness and ρ is the electrical resistivity.
The 2-D model uses the magnetic field components as state variables. The geometry of the

two-layer solenoid presents a symmetry plane that allows simulating only one tape in the cell.
In figure 1 the colored area denotes the simulated geometry. In the considered case, the current
flows in opposite direction in the two layers; this results in the condition Hy=0 along the AB
boundary. Due to the lateral periodicity of the geometry the same conditions holds along the
BC and DA boundaries. In the simulated geometry the Dirichlet boundary condition Hy = 0
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is therefore set along the boundaries AB, BC, and DA. On the CD boundary, which is situated
much farther from the tapes than represented in the figure, the tangential component of the
field is left free to vary (Neumann condition). For the simulations, the problem can be further
simplified by taking into account only one half of the tape and by applying the condition Hy = 0
on the dashed line displayed in figure 1. Even with all this simplification, the 2-D model is
still quite time consuming: the computation time of one ac cycle with a mesh sufficiently fine
to obtain smooth profiles is in the range 1,000-10,000 seconds1, depending on the considered
current amplitude and tape separation.

In the 1-D model the anti-inductive configuration is taken into account directly in the form of
the integral equation for the current density – see [6] for details. With the 1-D model simulations
are much faster, in the order of a few minutes.

In both models the superconductor is described by a non-linear resistivity, derived from a
power-law E(J) characteristic: E = Ec(J/Jc)

n. In this paper we considered the following
values for the superconductor’s parameters, which are typical of commercially available coated
conductors: width 2a=10 mm, Ic=300 A (self-field at 77 K), n=25. In the 2-D model the
superconductor is simulated as 10 µm thick, in order to keep the number of nodes at a reasonable
level. Since the minimum inter-layer separation considered in this paper is much higher (250
µm), this is a reasonable approximation.

3. Dependence of Jc on the magnetic field

Assuming a constant value for Jc in the E(J) characteristic might be a strong approximation,
since the dependence of Jc on the magnetic field exhibited by coated conductor tapes can affect
their performance. This is particularly true in assemblies of HTS tapes (cables, coils, etc.),
where each tape is subjected not only to its self-field, but also the the magnetic field generated
by neighboring tapes. It is beyond the scope of this article to give a precise Jc(B) characterization
of coated conductors, since it inevitably depends on the quality of the sample, the manufacturing
technique, and many other parameters. The important point is that for our models we need
to input a Jc(B) characteristic, where B is the vector representing the local magnetic field.
How to derive a realistic Jc(B) characteristic from experiments is a delicate issue, since usually
one measures the reduction of the critical current Ic as a function of the applied field, from
which deriving Jc(B) is not trivial. A good approach is the following: (i) make some physical
assumptions leading to a Jc(B) function depending on a certain number of parameters; (ii)
build a numerical model for the considered HTS tape; (iii) find the parameters of the Jc(B) that
optimize the V − I characteristics with respect to the measured ones. This approach has been
described in detail and successfully tested in [7] and [8], respectively. For our tests, we utilized
a Jc(B) model based on the results of Rostila et al [8]:

Jc(By) = Jc0 ·

[

1 +
|By|

B0

]

−α

, (2)

where By is the local magnetic field component perpendicular to the tape’s face, B0=25 mT,
and α=0.75. Since we compared the 2-D model with the 1-D one, which by its nature cannot
take into account the magnetic field component parallel to the tape’s face, in our Jc(B) model
the dependence on the parallel component is omitted.

The implementation of the Jc(B) relation (2) is quite different in our two models: in the 2-D
model, the two components of the magnetic field are the state variables, so that the variable By is
directly available during the computation. In the 1-D model, things are more complex, because
the model used the sheet current density J as state variable, and By needs to be computed by
means of the Biot-Savart law:

1 On a workstation with a 2-GHz clock speed and 4 GB of RAM.
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Figure 2. Magnetic field profile along the tape width computed with the standard and CPV
integration. The transport current is 0.9Ic.

By(x) =
µ0

2π

a
∫

−a

J(ξ)

ξ − x
dξ. (3)

Due to the strong singularity of the integrand when ξ = x, this integral has to be considered
in the sense of Cauchy Principal Value (CPV). This kind of integration is not available in the
software package used for the model implementation [9]. Using the standard routines offered to
the user results in large oscillations of the calculated magnetic field profile, as can be seen in
figure 2. In order to overcome this obstacle, we define the CPV integral as follows:

By(x) = ℜ





µ0

2π

a
∫

−a

J(ξ)

ξ − x + iǫ
dξ



 , (4)

where iǫ is a small imaginary quantity inserted to remove the singularity. By this artifice the
integral 4 is turned back into a normal integral. While lacking any mathematical rigor, this
method was tested on many analytical examples and we found its results more than acceptable
for our purpose.

The question is how small ǫ should be. It cannot be too small, because it would be ineffective.
On the other hand, if it is too large it would affect significantly the computation of By. We
found that the best choice is choosing ǫ of the same size of the mesh elements. This is easy to
do in the case of a regular mesh. However, in our 1-D model we usually use a non-uniform mesh
(coarser in the center of the tape and finer near the edges), in order to be able to investigate
situations when the magnetic flux penetrates over a small distance from the edge, for example
when the transport current is low. In our program, there is the possibility to set ǫ equal to the
size of the local mesh element h, so that ǫ is automatically adapted to the different size of the
mesh elements along the tape’s width.

Figure 2 shows a typical field profile obtained with standard integration and CPV integration
of equation (3).
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4. Results

In this section, we present the results of our computations. First we compare the losses as a
function of the transport current computed with the 2-D and 1-D model; then we discuss the
effects of the use of a Jc(B) relation in the two models; finally, we investigate the influence of
the tape separation on the ac losses.

4.1. Comparison between 2-D and 1-D model
In our previous works we have already presented a comparison of the results obtained with the
2-D and 1-D models (both in the case of isolated and interacting tapes), obtaining very good
agreement between the two models [5, 6]. The much shorter computation times of the 1-D model
made it look as the preferable choice for performing simulations. It has to be noted, however,
that the cases of interacting tapes presented in [6] were for relatively large tape separations. In
this section we present a more detailed comparison between the two models, focusing on small
tape separation, when differences between the models begin to emerge [10, 11].

edge edge

top/bottom

top/bottom

Figure 3. Schematic drawing of the regions where edge and top/bottom losses occur.

In a rectangular tape, the penetration of the magnetic flux (causing dissipation) can occur
both from the edges of the tape and from the flat faces of the tape [10]. This is schematically
represented in figure 3. In the case of an isolated thin tape, the first mechanism is dominant.
When thin tapes are close and carry opposite current, the magnetic field flux lines are compressed
in the space between the tapes and a substantial magnetic field parallel to the tape’ face is
created. This parallel magnetic field causes flux penetration in the superconductor from the top
and bottom faces, which contributes to the total ac losses [11]. This contribution can become
the main source of dissipation, depending on the tape separation and on the current carried by
the tape. For sake of clarity, we call the two types of dissipation edge and top/bottom losses,
respectively, as prposed by Clem [10].

The 1-D model, by its nature, can take into account only the edge losses. It is therefore
interesting to see what are the limits of its applicability and what is the error done by neglecting
the top/bottom losses.

Figure 4 displays the ac losses as a function of the transport current for different values of the
inter-layer separation, computed with the two models. In figure 4(a), 4(b), and 4(c) the losses
computed with the 2-D model are split into the edge and top-bottom components. The method
used to separate the two loss components will be described soon in a forthcoming paper. First,
it can be noted that the losses computed with the two models are generally different, and they
become similar only at large separations, e.g. 5 mm – see figure 4(c). Second, the excellent
agreement between the losses computed with the IE model and the edge losses computed with
the 2-D model constitutes a good proof that the IE model only takes into account the edge
losses.” A similar sentence should be corrected in the conclusion. From figure 4(d) it can be
observed that the losses computed with the IE model get closer to the total losses computed
with the 2-D model at higher currents and larger separation. This can be explained as follows:
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Figure 4. Ac losses as a function of the transport current for different values of the inter-layer
separation, computed with the two models. In figures (a)-(c) the losses computed with the 2-D
model are split in the contributions coming from the edge and top-bottom.

• At higher transport currents, the penetration of the magnetic flux from the edge becomes
more important, so that the edge losses are predominant – see also [10].

• At larger inter-tape separation, the tapes are less influenced by the neighbors: again, the
edge losses are predominant.

4.2. Losses with field-dependent Jc

As mentioned before, it is beyond the scope of this article to present a Jc(B) relation that
describes real YBCO CC samples and also compares the results obtained with constant and
field-dependent Jc. In this section, we would like to investigate the effects of inserting a Jc(B)
characteristic used to model the superconductors. In particular, we investigate the consequences
of using a Jc(B) relation in the 2-D and 1-D model. In doing that, we use for Jc0 in (2) the
same value used in the model with constant Jc, which inevitably results in a lower effective
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Table 1. Influence of the ǫ parameter in equation (4) on the ac losses (in J/m/cycle) for different
values of the inter-layer separation Lz and of the applied transport current.

Lz 0.25 mm 1 mm 5 mm 0.25 mm 1 mm 5 mm 0.25 mm 1 mm 5 mm
ǫ h h h 2h 2h 2h h/2 h/2 h/2

0.3 5.45E-07 3.20E-06 5.23E-06 5.08E-07 3.00E-06 4.96E-06 5.60E-07 3.28E-06 5.34E-06
0.4 1.89E-06 1.10E-05 1.89E-05 1.80E-06 1.05E-05 1.79E-05 1.94E-06 1.13E-05 1.92E-05
0.5 5.30E-06 3.10E-05 5.67E-05 5.00E-06 2.96E-05 5.28E-05 5.45E-06 3.19E-05 5.77E-05
0.6 1.34E-05 7.74E-05 1.52E-04 1.26E-05 7.31E-05 1.42E-04 1.37E-05 7.98E-05 1.58E-04
0.7 3.47E-05 1.87E-04 4.01E-04 3.20E-05 1.75E-04 3.68E-04 3.66E-05 1.93E-04 4.19E-04
0.8 1.25E-04 4.84E-04 1.13E-03 1.08E-04 4.42E-04 1.02E-03 1.34E-04 5.08E-04 1.18E-03
0.9 7.87E-04 1.73E-03 3.61E-03 6.91E-04 1.56E-03 3.30E-03 8.37E-04 1.80E-03 3.79E-03
1 1.29E-02 1.41E-02 1.74E-02 1.05E-02 1.18E-02 1.50E-02 1.43E-02 1.56E-02 1.88E-02

critical current of the tape. This means, for example, that when we apply a transport current
Ia=0.8Ic (where Ic is the critical current for the constant-Jc case), we are actually applying a
higher fraction of the real, effective critical current. But – once again – this is not a matter of
concern, because we want to compare the influence of using a Jc(B) relation in the 2-D and 1-D
model and not compare the results obtained with constant-Jc and Jc(B) models.

Firstly, we studied the influence of the ǫ parameter in equation (4) on the ac losses computed
with the 1-D model. The results are summarized in table 1 for different values of the inter-layer
separation Lz and of the applied transport current. We considered three values for ǫ: h, 2h and
h/2, where h represents the size of the local mesh elements. The loss values are quite stable,
and they are almost always within 10% of the value obtained with ǫ = h. As mentioned before,
considering larger value of h gives very different loss values, whereas considering smaller value
does not solve the problem of the numerical oscillations in the magnetic field profiles.

Secondly, we compared the results with those obtained with the 2-D model. In general, we
found that the results obtained with the two models are quite different, and for some values of
the current and tape separations they are very different. As an example, figure 5 shows the ac
losses as a function of the transport current for an inter-layer separation of 0.250 mm and 1 mm,
respectively. It can be noticed that the 1-D results are far from the 2-D ones and that, contrary
to the constant-Jc case, the losses computed with the 1-D model are also far from the edge loss
contribution computed with the 2-D model.

The reason for this result is that, since the 1-D model can account only for the edge losses,
it tends to ‘amplify’ the losses in the field dependent case. Indeed, since Jc is reduced, the edge
penetration is increased much, whereas in the 2-D model, the finite tape thickness can somehow
limit this penetration effect, especially because the field is not forced to be purely perpendicular
across the whole tape width.

4.3. Losses as a function of the tape separation
We studied the influence of the distance between tapes, both horizontal (dimension of the
periodic cell Lx) and vertical (layer separation Lz), using the 2-D model with Jc(B) dependence.
In general, we found that the inter-layer separation plays a more important role for the ac loss
value. As an example, figure 6 shows the losses as a function of the two parameters for a
transport current of 0.8Ic, computed with the 2-D model. In figure 6(a), it can be seen that the
dependence of the losses on Lx becomes important only for very large values of Lz, i.e. when
the electromagnetic interaction between the layers is small. For low values of Lz, the inter-layer
separation Lx has practically no influence on the losses. This is confirmed in figure 6(b), where
the dependence of the losses on Lz is plotted for various values of Lx. In this figure it can be
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Figure 5. Ac losses as a function of the transport current for Lz=0.25 mm (a) and Lz=5 mm
(b), computed with the 2-D and 1-D models including the Jc(B) dependence. In both cases
Lx=11 mm.
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Figure 6. Ac losses as a function of the size of periodic cell (a) and of the inter-layer separation
(b), computed with the 2-D model for a transport current of 0.8Ic.

noted that losses always increase with Lz, the increase being bigger for large values of Lx.
This analysis indicated that, in the design of a double non-inductive solenoid, particular care

has to be taken for lowering the inter-tape distance, taking into account the manufacturing
limits and the materials’ constraints.

5. Conclusion

In this paper we compared two models for computing ac losses in a non-inductive solenoidal coil
to be used for fault current limiter applications. In the 2-D computations, we separated the two
components of the losses, i.e. the edge losses and the top/bottom losses in order to show that
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the 1-D model accounts only for the edge loss contribution, which outlines an important limit
of the 1-D model. Indeed, while much faster than the 2-D model, the 1-D model cannot take
into account the penetration of the magnetic flux from the wide faces of the superconductors,
neither the associated losses. This component of the losses is particularly important when the
tapes are closely packed together. On the other hand the 1-D model tends to overestimate the
losses, so it can still be used for a rapid assessment of the loss level for a given configuration.
Finally, we also implemented the dependence of Jc on the local magnetic field in both models.
This implementation requires care in the 1-D model, in order to avoid numerical singularities
arising from the computation of the magnetic field starting from the current density. We also
showed that the discrepancy is between the 1-D and 2-D model is more important in the case
of a field dependent Jc.
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Science and Technology 20 1097–1100
[9] Finite-element software package Comsol Multiphysics. http://www.comsol.com

[10] Clem J R 2008 Physical Review B 77 134506
[11] Nguyen D N, Ashworth S P and Willis J O 2009 Journal of Applied Physics 105 063917

Rosie
Text Box
IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 11, January 2010

Rosie
Text Box
Page 9 of 9




