Qubit reset based on a quantum absorption refrigerator

Simone Gasparinetti

16th European Conference on Applied Superconductivity Bologna, Italy September 4, 2023

202Q · LAB

We use superconducting circuits to explore fundamental and applied questions in the areas of quantum information processing, microwave quantum optics and communication, and quantum thermodynamics.

Hiring! PhDs and postdocs

WACQT

CHALMERS Tinut and Alice

Department

European Innovation Council

Nano-fabrication facility

Thermally driven quantum refrigerator autonomously resets superconducting qubit

Mohammed Ali Aamir,^{1, *} Paul Jamet Suria,¹ José Antonio Marín Guzmán,² Claudia Castillo-Moreno,¹ Jeffrey M. Epstein,^{2, 3} Nicole Yunger Halpern,^{2, 3, †} and Simone Gasparinetti^{1, ‡}

arXiv:2305.16710

Quantum thermodynamics

Heat engines

Individual moleules Colloidal particles Single-electron devices Cold atoms Trapped ions Superconducting circuits

. . .

Quantum thermodynamics should be more useful...

Quantum advantages

Beat any classical machine at ...

- power output
- charging speed
- precision

¶ د ب

(Are we making a fair comparison?)

Practical applications

Deploy quantum thermal machines in useful settings, to do useful things

Example: Qubit reset

Qubit reset

- Necessary primitive for computing
- Speed and fidelity are key metrics
- Passive thermalization may be too slow and/or too unfaithful
- Resetting ancillary qubits is key in quantum error correction

ACTIVE RESET

Measure qubit, then flip if needed

UNCONDITIONAL RESET

Couple qubit to thermalized cold mode

Qubit reset in superconducting circuits

Ristè et int DiCarlo, PRL 109, 240502 (2012)

Magnard, ..., SG, ..., Wallraff, PRL 121, 060502 (2018) See also: 1. Zhou et al, Nat Commun 12, 5924 (2021)

Qubit reset in superconducting circuits

Unconditional ≠ autonomous: need coherent drives. Can we do the job with minimal thermodynamic resources?

Ristè et int DiCarlo, PRL 109, 240502 (2012)

Quantum absorption refrigerator

Early theory work:

Palao, Kosloff & Gordon, PRE 64, 056130-8 (2001) Linden et al, PRL 105, 130401 (2010) Levy & Kosloff, PRL108, 070604 (2012) Proposal with SC circuits Hofer et al, PRB 94, 235420 (2016)
Realization w trapped ions Maslennikov et al, Nat Commun 10, 202 (2019)
Reviews Mitchison, Contemp Phys 60, 164 (2019) (image credit)
Mitchison & Potts, in: *Thermodynamics in the Quantum Regime...(2018)*

Resetting a qubit with a quantum absorption refrigerator

evacuated

If also qubit H is excited, and the resonance condition $\omega_C = \omega_T + \omega_H$ is met, then both excitations are transferred to qubit C, then evacuated

evacuated

To build the machine, we need two key ingredients!

1) Microwave waveguides as heat baths

1) Microwave waveguides as heat baths

Previous work:

- Primary thermometry of synthesized thermal radiation
- Agreement bw synthesized and physical temperatures

Scigliuzzo et int SG, PRX 10, 041054 (2020)

Related work: Fink et al, PRL 105, 163601 (2010); Goetz et al, PRL 118, 103602 (2017); Wang et al, PRL 126, 180501 (2021)

2) Josephson junction as a quantum mixer

- Josephson energy: $E_J(1 \cos \hat{\varphi}_J)$
- Expand around $\hat{\varphi}_I = 0$
- Quadratic term \rightarrow linear eigenmodes \hat{a} , \hat{b}
- Write phase difference across junction as $\hat{\varphi}_J = \phi_a(\hat{a} + \hat{a}^{\dagger}) + \phi_b(\hat{b} + b^{\dagger})$
- Expansion of cosine potential generates mixing products, for example

 $\frac{E_J}{4!} \left(\phi_a(\hat{a} + \hat{a}^{\dagger}) + \phi_b(\hat{b} + \hat{b}^{\dagger}) \right)^4$

A simple quantum circuit with two modes. Adapted from Minev et al, cit.

Black-box quantization Nigg et al, PRL 108, 240502 (2012) Energy-participation quantization: Minev et al, npj Q Inf 7, 131 (2021) Josephson junction as a mixer: P Reinhold, PhD thesis, Yale (2019) (for the experts) 3-wave mixing with SNAIL: Frattini et al, APL 110, 222603 (2017)

Our quantum absorption refrigerator

 $Q_{1} \bigoplus_{g_{12}} \Gamma_{1} \bigoplus_{g_{12}} \Gamma_{2} \bigoplus_{g_{23}} \Gamma_{2} \bigoplus_{g_{23}} \prod_{g_{23}} \prod_{g_{2$

Hot waveguide

- Three transmon qubits Q1 Q2 Q3
- Two waveguides
- Readout resonator for Q3
- Q2 is used as a qudit
- 3-body interaction $a_1 \hat{a}_2^{\dagger} \hat{a}_2^{\dagger} \hat{a}_3 + h.c.$
- Resonance when $\omega_1 + \omega_3 = 2\omega_2 + \alpha_2$
- Q2 is frequency-tunable

QAR w superconducting circuits: Hofer et al, PRB 94, 235420 (2016) This 3-body interaction: Ren et al, PRL 125, 133601 (2020)

Demonstrating the three-body interaction

- Excite Q3, resonantly drive Q1, measure Q3
- Repeat for varying frequency of Q2
- Q3 pop is drastically reduced when resonance condition is met

Demonstrating the three-body interaction

- Excite Q3, resonantly drive Q1, measure Q3
- Increasing the strength of Q1 drive results in faster decay of Q3 population

Temperature-controlled, autonomous qubit reset

- Excite Q3, then elevate temperature of hot bath and measure Q3 pop vs time
- Relaxation time of Q3 drops by a factor 60 by heating the bath coupled to Q1!
- Steady-state population is lower than
 - (i) passive thermalization to qubit bath! --
 - (ii) Passive thermalization to coldest bath!

Temperature-controlled, autonomous qubit reset

- Excite Q3, then elevate temperature of hot bath and measure Q3 pop vs time
- Relaxation time of Q3 drops by a factor 60 by heating the bath coupled to Q1!
- Steady-state population is lower than
 - (i) passive thermalization to qubit bath!
 - (ii) Passive thermalization to coldest bath!

Some numbers:

Lowest steady-state population: 5×10^{-4} (Effective temperature: 23.5 mK)

Reset time (1%): 970 ns

For comparison:

Passive thermalization gives 2.8% (50 mK)

(Hypothetical) direct thermalization to cold waveguide would give 2.0% (45 mK)

Comparing to the state of the art in qubit reset

Adapted from Zhou et al, Nat Commun 12, 5924 (2021), Suppl Mat

Summary and outlook

Here Quantum Thermodynamics

- Demonstrated useful, fully autonomous quantum thermal machine
- Performance competitive with state of the art
- Resource-efficient approach to a quantum computing task
- What other tasks could be executed autonomously?

Here circuit QED

- Circuit QED + thermal waveguides = comprehensive platform for experiments in gthermo
- Build one-of-a-kind quantum thermal machines to leverage native interactions
- Measure scattered thermal radiation: average power, fluctuations, correlations

60

$202Q\cdot LAB$

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. Invited presentation given at EUCAS 2023, September 4, 2023, Bologna, Italy