REBCO superconducting coatings for high-energy physics applications at high magnetic fields

Joffre Gutierrez Royo*

A. Romanov, G. Telles, N. Lamas, I. Ahmed, N. Tagdulang, O. Traver, P. Krkotic, J. O'Callaghan, X. Granados, I. Korolkov, R. Miquel, F. Perez, M. Pont, J. Golm, B. Dobrich, W. Wuensch, S. Calatroni, T. Puig *jgutierrez@icmab.es

Outline

- **1** REBCO Coated Conductors and their surface impedance under large magnetic fields
- 2 How we coat surfaces with CC
- 3 Coated Conductors coatings in high-energy physics
- 4 Outlook and Conclusions

Outline

1 – REBCO Coated Conductors and their surface impedance under large magnetic fields

- 2 How we coat surfaces with CC
- **3 Coated Conductors coatings in high-energy physics**
- 4 Outlook and Conclusions

REBCO Coated Conductors are commercially available with different widths in Km length

Coated Conductor

 $T_c \approx 91 \ K$ $H_{c2} \ (4.2K) > 100 \ T$ $H_{irr} \ (4.2K) > 60 \ T$

REBCO CCs have lower R_s than Cu \rightarrow Better RF performance

T. Puig et al, Supercond. Sci. Technol. 32 (2019)

The lower the operating temperature, the larger the benefit from using REBCO

REBCO CCs have lower R_s than Cu \rightarrow Better RF performance

At intermediate and low temperatures, R_s of high-pinning REBCO shows a weak magnetic field dependence

The Gittleman-Rosenblum model

describes the microwave response of the mixed state

The Gittleman-Rosenblum model in a nutshell

 $\rho_{vm} = \frac{-\sigma}{\eta}$

Not considering thermal contributions
Assuming $\vec{F}_{\nu-\nu} \gg \vec{F}_{pinning}$

Equation of motion for fluxons:

$$m\ddot{x} + \eta \, \dot{x} + kx = J_{rf} \Phi_0$$
The vortex resistivity is :
$$B \Phi_0 = 1$$

$$\eta = 1.45 \frac{\phi_0 B_{c2}}{\rho_n}$$

From transport measurements

$$Z_s = R_s + iX_s = i\omega\mu_0 \sqrt{\lambda_l^2 - i\frac{\rho_{vm}}{\mu_0\omega}}$$

Fitting parameter

Gittleman-Rosenblum model predictions based on our Z_s experimental data

$$\rho_{vm} = \rho'_{vm} + i\rho''_{vm} \qquad \begin{cases} \rho'_{vm} = f'(R_s, X_s) \\ \rho''_{vm} = f''(R_s, X_s) \end{cases}$$

Gittleman-Rosenblum model predictions based on our Z_s experimental data

$$\rho_{vm} = \rho'_{vm} + i\rho''_{vm}$$

$$\rho''_{vm} = f'(R_s, X_s)$$

$$\rho''_{vm} = f''(R_s, X_s)$$

A. Romanov, et al. PhD thesis 2022

Gittleman-Rosenblum model predictions based on our Z, experimental data

Gittleman-Rosenblum model predictions based on our Z_s experimental data

$$\eta = \phi_0 B \frac{\rho_{\nu m}'}{\rho_{\nu m}'^2 + \rho_{\nu m}'^2}$$

$$\boldsymbol{\nu_p} = \boldsymbol{\nu} \frac{\boldsymbol{\rho_{\nu m}}}{\boldsymbol{\rho_{\nu m}'}}$$

A. Romanov, et al. PhD thesis 2022

Gittleman-Rosenblum model predictions based on our experimental data

A. Romanov, et al. Scientific reports 10 (2020)

timation of dominating fragmancy of

*Estimation of vortex viscosity η

*The filled symbols relate to surface impedances measurement. The open symbols to transport measurement and R_s fitting.

REBCO CCs have high depinning frequencies Enables operation up to high frequencies

Gittleman-Rosenblum model predictions based on our experimental data

The G-R model predicts a much larger benefit from REBCO at lower operating frequencies

Outline

1 – REBCO Coated Conductors and their surface impedance under large magnetic fields

2 – How we coat surfaces with CC

- **3 Coated Conductors coatings in high-energy physics**
- 4 Outlook and Conclusions

Scalable CC coating technique for large surfaces

Attach Welding of CC on top of a surface

Thickness & homogeneity of the solder is critical Homogeneous pressure and temperature are crucial

N. Lamas, et al. (to be submitted)

Scalable CC coating technique for large surfaces

Thickness & homogeneity of the solder is critical Homogeneous pressure and temperature are crucial

Angle and speed of substrate extraction are crucial

N. Lamas, et al. (to be submitted)

We have developed a fast characterization of the coatings

Optical microscope picture of a delaminated tape

HSV Colours observed on the substrate correspond to different coating surface compositions determined by EDX.

N. Lamas, et al. (to be submitted)

We have developed a fast characterization of the coatings

Correlation between EDX and SHPM

HSV Colours observed on the substrate correspond to different coating surface compositions determined by EDX.

rentComplete assessment of the sample quality from opticalN. Lamas, et al. (to be submitted)microscopy only

Outline

- **1 REBCO Coated Conductors and their surface impedance under large magnetic fields**
- 2 How we coat surfaces with CC
- **3 Coated Conductors coatings in high-energy physics**
- 4 Outlook and Conclusions

CCs as low-impedance coating for the FCC-hh beam-screen chamber

FCC working conditions: 16 T, 40 – 60 K, 1 GHz & 25 A peak

Cross sectional image of the FCC beam screen coated with REBCO

Trapped fields in REBCO will disturb the magnetic field homogeneity producing proton beam instabilities

Numerical Analysis on the Application of a ReBCO Superconducting Coating on the Beam Screen, J. van Nugteren et al., Technical Report CERN

Hybrid REBCO – Cu coating with lower than Cu R_s minimizes trapped fields

REBCO – Cu hybrid coating simulations

10³

Experimental data of surface resistance for different hybrid coatings

G. T. Telles, et al. Supercond. Sci. Technol. SUST-105137.R (2022)

The R&D and successes of CC coatings for the FCC-hh beam-screen chamber open the door for this application to other high-energy physics fields.

Hybrid REBCO – Cu coating with lower than Cu R_s minimizes trapped fields

Experimental data of surface resistance for different hybrid coatings p = 89%0.16 9 T = 50 K, v = 8 GHz0.14 8 0% REBCO 0.12 **4** mm Δ 100% Cu 0.1 **4** mm 0.08 6 G. Telles 49% **2** mm Today @ 15:20 2-LO-MS-01S 67% 92% **Room: Azurra** 100% REBCO 10³ $\eta_{\mathsf{max,-b}}$ 100% η_{max} 0% Cu 2 10^{2} VAAAAAA 0 2 8 10 6 0 Δ $\mu_0 H$ in T G. T. Telles, et al. Supercond. Sci. Technol. SUST-105137.R (2022)

REBCO – Cu hybrid coating simulations

-iled distubance

10-1

3

5

Multipole Coefficients

9

7

11

CCs as low-impedance coating for haloscopes for cold DM axions search

RADES haloscopes have a 18 mm - Ø curved inner surface that will induce strain in the REBCO layer

Proof-of-concept: CC coated RADES haloscopes

With some R&D efforts we made it work on curved surfaces

Higher than Cu Q-value RADES halsocopes @ GHz are achieved with CC. Flat cavities specifically design for CCs are preferable and will perform much better.

Outline

- **1 REBCO Coated Conductors and their surface impedance under large magnetic fields**
- **2** How we coat surfaces with CC
- **3 Coated Conductors coatings in high-energy physics**
- 4 Outlook and Conclusions

New facility at ICMAB to study vortex matter under broad RF up to 16T

New cryostat equipped with 50mm Ø bore 16 T solenoid magnet High (1 mK) temperature Stability Height of the magnet 360+ mm

Currently Operational

- 8 GHz & 26 GHz dielectric resonator: 12x12 mm samples
- Operating in the TE_{011} mode
- 6.5, 8.2 and 10 GHz dielectric resonator: 12x12 mm samples
- Operating in the TE_{011} , TE_{012} and TE_{013} modes

Coming Autumn – Winter 2023

- Multimode 1.8 GHz 11 GHz PPR: 12x50 mm samples
- Compatible with ICMAB's new cryostat:

50mm Ø bore 16 T magnet

New facility at ICMAB to study vortex matter under broad RF up to 16T

50mm Ø bore 16 T magnet

Automatization of the different steps is crucial

Pre-tinning unit ready

The unit for the soldering is in an advanced construction phase

Initial study shows that CCs have a weak dependence with the RF power

P. Krkotic, et al. Supercond. Sci. Technol. 35 (2022)

Opens the possibility for high-power applications Future high-energy or high-power linacs Muon collider

Preliminary results show that CCs have a weak dependence with the RF power

Can REBCO operate at accelerating gradients E > 150MV/m?

P. Krkotic, et al. Supercond. Sci. Technol. 35 (2022)

Opens the possibility for high-power applications

Future high-energy or high-power linacs Muon collider 2" Ø REBCO coated sample

Conclusions

CCs are very appealing materials for High-energy physics due to their low R_s , high H_{irr} and high currents under magnetic field.

REBCO CCs coatings provide a solution to reduce the surface impedance of the FCChh beam-screen chamber and hence operate the system at high temperatures with the consequent decrease in running cost.

We have demonstrated that haloscopes coated with REBCO have a higher Q-value in the GHz range. Flat cavities specifically design for CCs are preferable and will perform much better.

We are undergoing a process of automatization of the coating which will increase the quality and the yield.

Initial results encourage further research at high-RF powers, with impact in areas like high-power linacs and "muon" colliders.

At ICMAB we have a broad range of experimental facilities

- 8 GHz dielectric resonator: 12x12 mm samples
- **Operating in the** TE_{011} **mode**
- Compatible with ICMAB's cryostat:

25mm Ø bore 9 T solenoid magnet

New cryostat equipped with 50mm Ø bore 16 T solenoid magnet Height of the magnet 360+ mm

Proof-of-concept: CC coated FCC-hh beam screen chamber

Courtesy of K. Brunner, P. Krkotić and S. Calatroni

Initial characterization of the REBCO coated BS shows that its surface resistance is lower than that of Cu coated BS

The R&D and successes of CC coatings for the FCC-hh beam-screen chamber open the door for this application to other high-energy physics fields.

Proof-of-concept: 1st CC coated RADES haloscope shows a 50% in-field Q improvement

1st RADES cavity

Q(11T, 4.2K) ~ 40k

Proof-of-concept: 1st CC coated RADES haloscope shows a 50% in-field Q improvement

1st RADES cavity

CC coated Axion cavity Q(0T, 4.2K) ~ 80k Q(11T, 4.2K) ~ 60k

Q(11T, 4.2K) ~ 40k

Cu only

VS

The R9 mm bending radius was a bit too much for the THEVA CC used

Bending radius problem: SC properties depends on strain

 $\epsilon_{\rm max} \approx 0.0045$

Konstantopoulou, Konstantina. Mechanical behavior of 2G REBCO HTS at 77 and 300 K. Diss. Caminos, 2015.

The 2nd RADES cavity presents a Q(OT) 2.5 times larger than the 1st cavity

The 2nd RADES cavity presents a Q(OT) 2.5 times larger than the 1st cavity

2nd RADES cavity

Lorentz forces ripped the REBCO coating

Courtesy of J. Golm

Currently all the steps during our coatings are manually done Time consuming Reproducibility is subject to human errors

Lorentz forces ripped the REBCO coating

Courtesy of J. Golm

Proof-of-concept: CC coated FCC-hh beam screen chamber

Courtesy of K. Brunner, P. Krkotić and S. Calatroni

The surface resistance of REBCO is very low as to give accurate quantitative results