

LATEST DEVELOPMENTS IN COATED CONDUCTORS WILL REVOLUTIONIZE MAGNET TECHNOLOGY

Werner Prusseit, Veit Grosse, Markus Bendele, Oleksiy Troshyn THEVA Dünnschichttechnik GmbH

Virtual CCA 2021 14.10.2021

THEVA AT A GLANCE

Company: THEVA GmbH, HQ in Ismaning, Germany, established 1996

Team: 50 FTE (mainly R&D engineers and production team)

Product portfolio

HTS coils

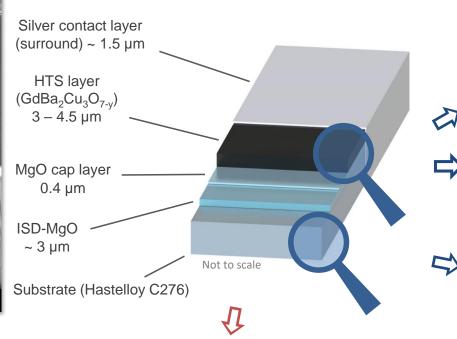
Inspection tools Tapestar™

Value proposition

- Robust, high performance products
- Reliable wire supply
- Expertise and engineering support

Main applications

- HTS cables and bus bars for high current
- Current leads (with low heat input)
- Magnets: high field, fusion, industry


HTS Wire: Production & Properties

THEVA Pro-Line HTS Wire and Latest Improvements

Basic wire architecture

2018 5.00um SEM cross section

Low heat conductivity for current leads (1.5 mW/100A)

Performance improvements

High performance (HP) wire

Increased HTS thickness $3 \, \mu m \rightarrow 4.5 \, \mu m$ I_C (77K,sf) 700 A \rightarrow 900+ A

Artificial pinning (AP) formula

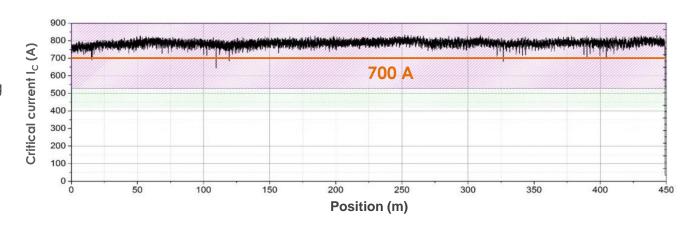
BaHfO $_3$ nano-particles Randomly dispersed – no columns I_C (20K,20T) > 500 A/cm

Reduced substrate thickness

 $50 \ \mu m \rightarrow 40 \ \mu m$ Higher engineering current density AP-wire: j_e(20K, 20T) > 800 A/mm²

HIGH - PERFORMANCE HTS WIRE

Regular production wire

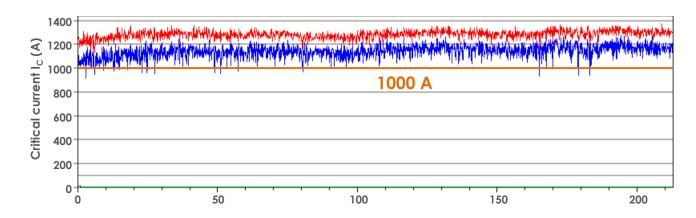

Width: 12 mm

3, 4, 6 mm available by Laser slitting

 $I_{C.min}$ (77K, s.f.) = 500 A - 700 A

Piece length: 100 m - 200 m

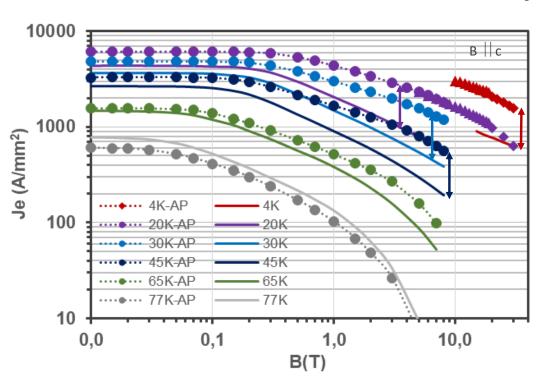
also with AP-formula



High performance wire

Enhanced HTS thickness (4.5 μm)

 $I_{C,min}$ (77K, s.f.) = 750 A - 1000 A


Piece length: 50 m - 200 m

MAGNETIC FIELD PERFORMANCE OF AP-REBCO WIRE

Field dependence of ReBCO-wire (+ BaHfO₃)

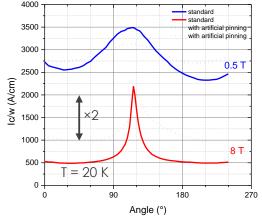
Below 50 K: I_C(B) improvement by factor 2.5

THEVA Pro-Line AP wire performance

Current density for B | c of total 60 µm thick tape (40 µm substrate and 5 µm surround Cu coating)

■ 10 T: 3000 A/mm²

• 20 T: 2000 A/mm²


@ 4.2 K

■ 30 T: 1550 A/mm²

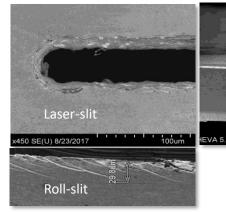
@ 20 K, 20 T: 800 - 900 A/mm²

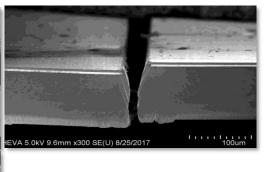
Reduced anisotropy

- AP randomly dispersed
- no columnar growth



LASER-SLITTING


- Cost aspect: slitting can destroy substantial value
- > Edge defects are critical for high field applications


High yield Laser tape slitting

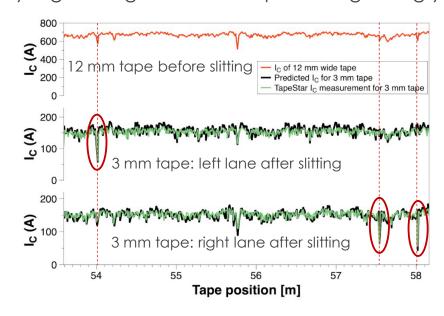
Technical characteristics

- High speed 1000 m/h (for 100 μm HC276)
- High accuracy, narrow tolerances
- No waste material
- No I_C reduction ($I_{C-12mm} = 4 \times I_{C-3mm}$)
- No cracks or defects induced
- Clean, straight edge no burr

© THEVA Dünnschichttechnik GmbH 2021

QUALIY CONTROL: TAPESTART - ENHANCED FUNCTIONALITY

Enhanced operating range


In-field measurement
HTS field coil up to 1 Tesla in LN

Low temperature option
Subcooling LN down to 68 K

Yield forecast for (Laser) slitting

Algorithm using full 2D Tapestar data of wide tape analyzing existing defects and predicting slitting yield

- black: I_c -simulation for 3 mm slitting
- green: measured I_C after 3 mm slitting

High Field Magnet Applications

SUPERCONDUCTING WIRE MATERIALS - A COMPARISON

How does ReBCO compare to classical superconductor wire?

Pros & Cons

> LTS, MgB₂ or BSCCO produced by classical, metallurgical PIT – route

Modifications tricky

Round, filamentary wire, easy twisting and flexible handling and packaging

Design freedom

• Some materials (Nb₃Sn, BSCCO 2212) require "wind and react" processing

Adversity, risk

- > ReBCO "wires" are coated tapes (coated conductors)
 - Additive fabrication: coatings are applied layer by layer by PVD
 - Growth can be controlled and manipulated (e.g. adding artificial pinning)

■ 12 mm production width – Laser-slit to custom-width (3 – 12 mm)

Customized electrical stabilization applied afterwards

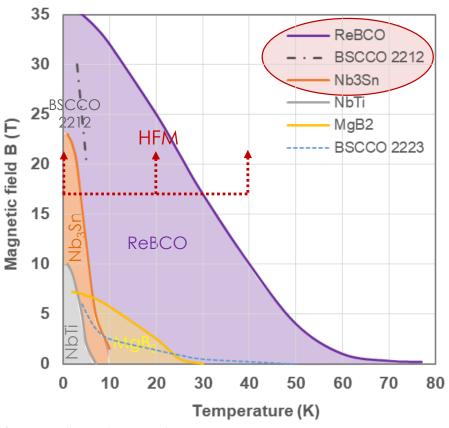
Tape geometry, no filaments, only stacking possible

Mechanical strength determined by substrate choice (mostly HC276)

Easy modification

Flexible adaptation

Flexible adaptation

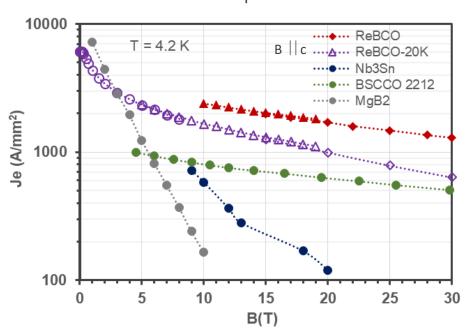

Limited freedom

Strength adjustable

MATERIAL CHOICE FOR HIGH FIELD MAGNETS (HFM)

Practical operation range of superconductors

For HFM the choice has considerably increased


- Classical, well-established Nb₃Sn (OST/BEST), W&R
- ➤ BSCCO 2212 experimental material, high pressure processing, W&R, single source, cost?
- > ReBCO (2G HTS)
 - Extremely wide operation range (B & T)
 - High pinning forces & H_{irr}
 - Sprouting industrial (volume) production
 Perspective: commodity product, cost decline
 - RE/NM-content negligible not a cost factor

W&R = wind & react material RE = rare earth, NM = noble metal

SUPERCONDUCTORS FOR EXTREMELY HIGH FIELD MAGNETS

Commercial superconductor wire

MgB₂: M. Tomsic, Hypertech 2015 BSCCO: Z. Melhem, OST @ ASC 2020

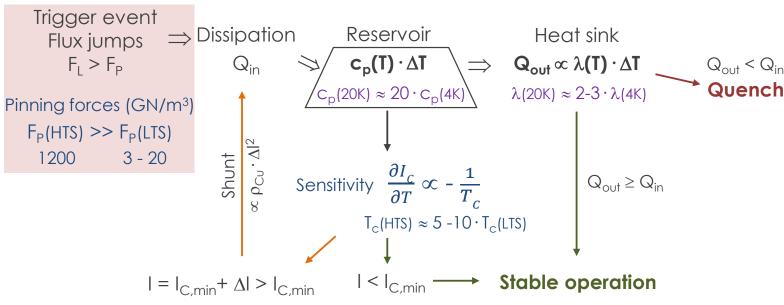
Nb₃Sn: Supercon 2020

Artificial pinning (AP) ReBCO wire

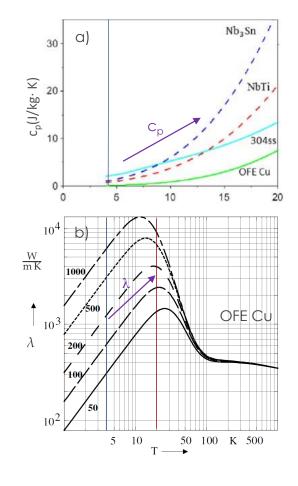
- Giant progress made in ReBCO wire recently
- All suppliers offer special AP-material
- Extremely high pinning forces

1.2 TN/m³ @ 4 K, 18 T *

- Broad HF operating range (up to 20 K)
- Quench resilient


Beyond 18 T the future belongs to ReBCO wire

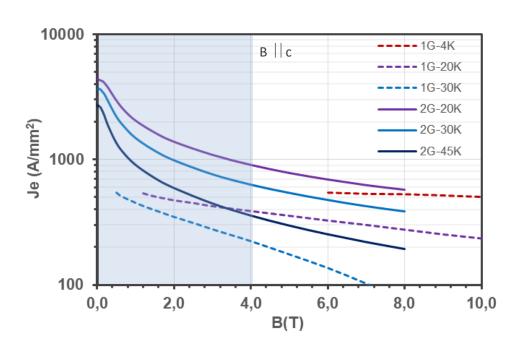
* T. Yoshida et al., Fujikura Technical Review 2017


QUENCH BEHAVIOR OF HTS MAGNETS

Comparing LTS (4K) to HTS (20K) operation

- Benign behavior (phys. properties) at higher temperature
- No LHe inventory no He gas burst

HTS magnets are much more stable to operate


a) T. Tabin, et al. Int. J. of Solids and Struct. 202.10.1016/j.ijsolstr. 2020.05.033 (2020)

b) S. Russenschuck, 2011; https://doi.org/10.1002/9783527635467.app1

COMPARISON 1G VS. 2G - WIRE IN MODERATE FIELD APPLICATIONS

Comparison of commercial 1G and 2G wires

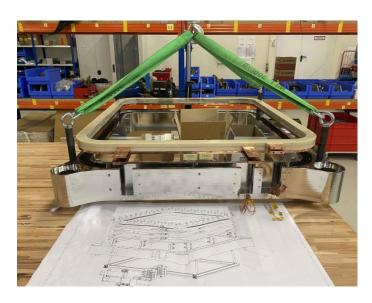
Standard ProLine ReBCO without AP

- @ 2 T, same temperature 2G performs 3× better
- Up to 3 T 2G-wire @ 45K better than 1G @ 20K
- For moderate field applications 1- 5 T
 standard 2G-wire outperforms 1G by factor of 3
- THEVA's 2G-AP wire even 6 8 times superior
- 2G-wire has a clear cost advantage in motor- and MRI applications

1G DI-BSCCO 2223 data from SEI datasheet SCT02-2020-041

ROWAMAG: HTS MAGNET SYSTEM FOR ALUMINUM BILLET HEATER

FEM design and manufacturing of HTS magnet system


Robust coils for industrial applications

Coil design and manufacturing technology

- Square-shaped, 1×1 m² double pancake coils
- Resin potted
- Smooth surfaces for dry cooling

Status

- All coils successfully tested in LN
- Magnet system assembled
- Induction heater assembly ahead

Partners

Cryogenic system

OEM induction heater

SUMMARY

ReBCO - wire is ...

- a novel product that differs in many ways from classical superconductors
- > offering new perspectives for robust magnets even at extremely high fields
 - extremely high pinning forces
 - large operation window
 - quench-resilient
- > Ready to use material (no W&R) with high resolution inspection data available
- Attractive cost perspective
 - Raw material < 20% of product cost
 - HTS content of wire < 5%
 - Production cost scale with volume: 10× production volume ⇒ ½× cost

2G HTS wire will revolutionize high field magnet design

