Recent status of Fujikura's 2G HTS wire

<u>Satoru Hanyu</u>, Shinji Fujita, Yutaka Adachi, Kazuomi Kakimoto, Yasuhiro Iijima, Masanori Daibo

Introduction

- Recent progress of 2G HTS wires at Fujikura
- Evaluation of the mechanical properties of 2G HTS wires
- HTS magnets
- Summary

Recent shipment of Fujikura's RE-based HTS tapes

https://ir.bruker.com/press-releases/press-release-details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

Introduction

Recent status of 2G HTS wires at Fujikura

- Evaluation of the mechanical properties of 2G HTS wires
- HTS magnets
- Summary

Typical Specifications of RE-based HTS tape at Fujikura

Products	Width	Thickness	Substrate	Stabilizer	Critical Current [A]	
	[mm]	[mm]	[µm]	[µm]	77K, S.F.	20K, 5T ^{*3}
FYSC-SCH04	4	0.13	75	20	≥ 165	368
FYSC-SCH12	12	0.13	75	20	≥ 550	1,104
FYSC-S12 ^{*1}	12	0.08	75	_	≥ 550	_
FESC-SCH02 *2	2	0.11	50	20	TBD	(257)
FESC-SCH03 ^{*2}	3	0.11	50	20	≥ 63	497
FESC-SCH04 *2	4	0.11	50	20	≥ 85	663
FESC-SCH12 *2	12	0.11	50	20	≥ 250	1,990
FESC-S12 *1,2	12	0.06	50	_	≥ 250	1,990

*1 Non-copper stabilizer specification is available in only 12mm-wide for current lead or low thermal conducting applications.

*2 Artificial pinning specification is mainly for use in magnet applications at low temperature and high magnetic field.

*3 Ic@20K, 5T is a reference value and no guarantee of the actual performance.

*4 If requested, an option customizing copper plating thickness is also available. (e.g., 5µm, 10µm or 40µm)

FYSC(Non-AP) is recommendable for use at relatively higher temperature.

FESC(AP) is recommendable for use in magnet applications at lower temp. and higher field.

Example data of longitudinal I_c distribution of 4mm-wide tape

Example data of longitudinal I_c distribution of 3mm-wide tape

3 mm-wide tape: FESC-SCH03

7

Example data of longitudinal I_c distribution of 2mm-wide tape

2 mm-wide tape: FESC-SCH02

Measured by 4-terminal method current conduction measurement at every 4.7 m

Evaluation of lot-to-lot variation of in-field I_c (1)

Evaluation results between Ic at 77K, self-field and in-field Ic, compared with conventional(w/o AP) tapes

Fujikura's tapes show very good correlation

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022. measured at Fujikura, and exploited values with Ic
 in-field Ic measured at Tohoku university

Evaluation of lot-to-lot variation of in-field I_c (2)

Fujikura's tapes perform very good reproducibility

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

B//c

Typical data measured in RRI(robinson research institute)

You can see the data at "http://htsdb.wimbush.eu"

Temperatures, fields and angles can be changed.

Introduction

Recent progress of 2G HTS wires at Fujikura

- Evaluation of the mechanical properties of 2G HTS wires
- HTS magnets

Summary

Tensile Stress

Tensile stress evaluation at LN₂ temperature (Reference)

- Sample : 4mm-wide, 75 μm-thick Hastelloy + 20 μm-thick Cu plating (FYSC-SCH04)
 4mm-wide, 50 μm-thick Hastelloy + 20 μm-thick Cu plating (FESC-SCH04)
- Measurement method :
 - 1. Ic measurement without load in LN_2 (Ic₀)
 - 2. Ic measurement with applying tensile strain in LN_2 (Ic₁)
 - 3. Ic measurement without load (Ic_2) after applying tensile strain in LN_2

13

Bending Property

- Bending property evaluation at LN₂ temperature (Reference)
- Sample: 4mm-wide, 75 μm-thick Hastelloy + 20 μm-thick Cu plating (FYSC-SCH04)
 4mm-wide, 50 μm-thick Hastelloy + 20 μm-thick Cu plating (FESC-SCH04)
- Measurement method ("Goldacker" continuous bending method) :
 - 1. Ic measurement in straight in LN_2 (Ic₀)
 - 2. Ic measurement with applying bending strain at LN_2 (Ic₁)
 - * Bending direction is tensile direction with superconducting layer outside.
 - 3. Ic measurement in straight (Ic_2) after applying bending strain in LN_2

Schematic of bending test

Ic/Ic₀ versus bending radius

No Ic degradation for 50µmt substrate below bending radius of 5mm of the measurement limit

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

Example data of compressive test at room temperature

■ Sample : FESC-SCH04 (4mm-wide, 50 µm-thick substrate + 20 µm-thick copper)

January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

compressive stress in thickness direction

Evaluation of tensile properties of divided 4 mm-wide

Mechanical Strength & Reliability Cyclic Fatigue Test

- Repetition frequency : 1 12 Hz (sine wave)
- Maximum stress : σ_{max} = 645 -365 MPa
- Stress ratio : $R = \sigma_{max}\sigma_{min} = 0.3$ (constant)
- Maintain initial strength up to ~ 10^5 cycles
- Above that, the tensile strength decreases due to fatigue of metal components of the tape.
- Origin of the crack is confirmed by the copper layer.

Number of load, N S. Fujita, et al.,IEEE Trans. Appl. Supercond. 30-4 (2020) 8400205

Improvement of delamination strength

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

© 2022, Fujikura Ltd.

Outline

Introduction

- Recent progress of 2G HTS wires at Fujikura
- Evaluation of the mechanical properties of 2G HTS wires
- HTS magnets
- Summary

Feasibility Study of conduction-cooled sextupole HTS magnet

✓ Development of quench detection and protection

- Study of voltage detection \rightarrow
- **Optimization of copper stabilizer** \rightarrow
- ✓ Uniformity of magnetic field
 - Shield current \rightarrow
 - Windings \rightarrow

Parameter	Value		
Bore radius	40 mm		
Coil length	200 mm		
Yoke radius(inner, outer), length	150.5, 195, 200 mm		
Normal sextupole			
Coil width (inner, outer), height	38.6, 83.6 mm, 9.0 mm		
Number of turns	112 x 2 turns		
Operating current	257.6 A		
Max B// on the conductor	2.27 T		
Max B⊥ on the conductor	1.30 T		
Stored energy	2.1 kJ		
Skew sextupole			
Coil width (inner, outer), height	76.6, 94.0 mm, 4.5 mm		
Number of turns	43 turns		
Operating current	259.5 A		
Max B// on the conductor	0.79 T		
Max B⊥ on the conductor	0.56 T		
Stored energy	0.13 kJ		

collaborate with KEK

K.Tsuchiya, et. al

I'll show Today

Recently fabricated

3

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

Fabrication and evaluation results of pancake coils

FYSC-SCH04-FPI : FYSC-SCH04 with Fluorine coating polyimide tape insulation

6 DPCC with Vacuum Pressure Impregnation

I-V characteristics of 6 DPCC at 77 K

Current [A]

o #6

+ #5

n-values > 25 at 77 K of all 6 DPCC \rightarrow Good performance

1.0E-09

10

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 52, January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

100

Excitation test of sextuple HTS Magnet at 77 K, 4.2 K

magnet and measurement setup, the electrical schematic of dump circuit.

January, 2023. This presentation was given at EFATS 2022 (virtual) August 30-31, 2022.

Summary

- Strengths of Fujikura's RE-based HTS wire is uniformity
 - Fujikura has focused on manufacturing uniform RE-based HTS tapes
 - •We recently start to ship 2mm and 3mm-wide tapes
 - •We have investigated various mechanical properties of the RE-based HTS tapes for the applications.
 - •We try to understand our HTS tape through application of HTS magnets

Fujikura has studied for increasing current density at high field Thank you for your attention !

