Design and Scaling Laws of a 40-MW class Electric-Wire-Interconnect-System (EWIS) for Liquid-H₂ Fuel-cell Propulsion

Dr. Timothy Haugan, U.S. Air Force Research Laboratory

Dr. Mary Ann Sebastian, Dr. Bang Hung Tsao, University of Dayton Research Institute

Dr. Chris Kovacs, AFRL, Scintillating Solutions LLC

2nd International Conference on Emissions Free Air Transport

Through Electric Propulsion

Hybrid, 30,31 Aug 2022

CHEETA, Superconducting Materials Team

University of Dayton **Research Institute**

Senior Personnel

Timothy Haugan timothy.haugan@ us.af.mil Senior Research Physicist AFRL-RQQM

Bang-Hung Tsao Group Leader Advanced Power Components UDRI

Mary Ann Sebastian **Materials Engineer** UDRI

Chris Kovacs **Materials Engineer** AFRL, Scintillating Solutions LLC

Acknowledgment of Support

- NASA University Leadership Initiative (ULI) #80NSSC19M0125
- AFRL/RQ Aerospace Systems Directorate -
- AFRL/AFOSR LRIR #18RQCOR100, Dr. Ken Goretta

Electric Aircraft Propulsion – the 3rd era in Aviation!

NASA X-57 Maxwell

www.nasa.gov/sites/default/files/thumb nails/image/x-57_maxwell_city.jpg

	Electric	2-12 Passenger	120-440 Passenger	
Drivetrain Efficiency	90-95%	15-20%	35-40%	
Energy Cost	\$2.55/gge @ \$0.07/kwh	AvGas \$6/gal	JP8, \$3.5-\$4/gal	
Carbon-free Fuel	yes	costly	costly	
Operation Costs	80-90% lower			
Maintenance		10-100x higher	10-100x higher	
Altitude cruise	100-40,000 ft	10,000-20,000 ft	30,00040,000 ft	
Noise	70% lower			
Airports to Use	13,000+ small/regional		IEEE CS (global	

Electric Aircraft Pre-Sales, as of 27 Apr 2022

			Vehicle	Goal for								
Electric Aircraft Manufacturer	Model	Aircraft # seats	Cost (each)	Operation (Year)	Company IPO, Total \$	Airline Purchases	# Sales	Total Sales (\$)	Reference Date	Reference		
Archer Aviation			\$5M	2025	\$1.1B	United, Mesa	200 + 100 (option)	\$1B	10-Feb-2021	techcrunch.com/2021/02/10/		
Beta	Alia-250		\$4.5M	2024	\$0.796B	United Parcel Service (UPS)	10 firm + 140 (option)	\$0.675B	20-Apr-2022	https://www.futureflight.aero/ne ws-article/2022-04-20	Pr	r <u>esales</u> E E E O oiroroft*
Boom Aerospace	Overture 'supersonic'		\$200M	2029		United	15 + 35	\$3B	13-Dec-2021	www.prnewswire.com/news- releases	>	5,550 aircraft* \$298
Bye Aerospace	eFlyer 2	2	\$0.49M			many	~ 380	\$0.19B	25-Apr-2022	https://byeaerospace.com/		
Bye Aerospace	eFlyer 4	4	\$0.63M			п	~ 385	\$0.24B	25-Apr-2022	https://byeaerospace.com/	IP	'O's > \$8B
Bye Aerospace	eFlyer 800	8	\$6M			"	135	\$1.1B	25-Apr-2022	https://byeaerospace.com/		
Eviation	Alice	6 to 9	\$4M			Cape Air, many	150	\$0.6B	18-Apr-2022	www.geekwire.com/2022/		Compose to 0
Eviation	Alice	6 to 9	"	2026		DHL	12	\$0.05	18-Apr-2022	www.geekwire.com/2022/		Compare to
Joby Aviation				2024	\$1.6B	Joby Aviation						43,000
Lilium		7	\$4.5M		\$1.94B	Azul (Brazil), NetJets	370	\$1.7B	8-Mar-2022	https://robbreport.com/motors/a viation/		commercial
EVE Urban Air Mobility			\$8M			Azorra (Embraer), many	1,785	\$14.28	16-Mar-2022	/www.reuters.com/business/aero space-defense		aircraft
Heart Aerospace	ES-19	19 seats	\$8.8M	2026		United, Mesa	200	\$0.9B	7-Jul-2021	www.bloomberg.com/news/artic les/2021-07-13/		worldwide in
Textron Aviation	Cessna Grand Caravan EX	10-14 seats	\$2.4M			Surf Air Mobility	150	\$0.36B	20-Jul-2021	media.txtav.com/201086		2022
Velos Electro, Pipestrel	Velis Electro	2	\$0.094M			Europe, E-trainers	250	\$0.024B	8-Feb-2021	https://www.electrive.com/2021 /02/08	•	Wost Aircraft
Vertical Aerospace	VA-X4	5	\$4M	2024	\$2.2B	many	1,350	\$5.4B	4-Apr-2022	simpleflying.com/		not built or
Volocopter					\$0.376B				4-Mar-2022	https://www.electrive.com/2022 /03/04		certified yet
ZeroAvia	ZA2000-RJ engines, e.g. for UA CRJ-550	100	\$2M	2028		United	50 + 50 (engines)	\$0.1B	13-Dec-2021	www.prnewswire.com/news- releases	IEEE C NEWS 2023.	SC & ESAS SUPERCONDUCTIVITY FORUM (global edition), January, This presentation was given at
					\$8.00B	Subtotals	5.562 +	\$29.6B+			EFATS	2022, August 30-31, 2022.

Center for High Efficiency Electric Aircraft (CHEETA) Liquid-H₂ Fuel Cells + Battery, Design Study, FY20-22

- NASA University Leadership Initiative (ULI)
- U. of Illinois UC, Dr. Phil Ansell, Lead PI
 - Boeing Research and Technology (BR&T)
 - General Electric Global Research (GE Global)
 - Massachusetts Institute of Technology (MIT)
 - University of Arkansas (UARK)
 - Rensselaer Polytechnic Institute (RPI)
 - Ohio State University (OSU)
 - University of Dayton Research Institute (UDRI)
 - AFRL/RQ collaboration, no \$
- Funding ~ \$6M for 3 years, FY20-22

Boeing 737-800, CHEETA VO3 Comparison **178 Passengers**

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

	737-800	CHEETA VO3
Propulsion Fuel, Energy	JP-8	Liquid-H _{2,} Li-Battery
Operational Empty Weight (OEW)	91,300 lb	138,000 lb
Maximum Take Off Weight (MTOW)	174,000 lb	190,000 lb
Fuel Weight	47,570 lb	16,700 lb
Fuel Energy	917 GJ	1,074 GJ
Peak Motor Power	24,000 – 27,000 lbf	22.5 MW
Cruise Motor Power	5,960 lbf	16.4 MW

https://en.wikipedia.org/w iki/Boeing 737 Next Gen eration

CHEETA Liquid-H₂+fuel-cell, 2020 drivetrain architecture V02 40 MW, 1 kV, 40 kA!, 43 m cable length IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM CHEETA, Sept 2021 drivetrain architecture V03 (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022. 22.5 MW, ± 270V, (13.9 kA, ~75.5m to/from for ½ side) cable length

8

AFRL/UDRI Project Task 1 Power Distribution System: 22.5 MW, ± 270 V, 13.9 kA

- Determine Scaling Laws for Major Components: how mass, heat-loads vary
- Goals: compare different technologies, design options, sensitivities, and swaps

			Year 1	Year 2	Year 3
Metal Cable	Al-99.999% 'hyperconductor'	20K, 300K	Х		
	Copper-clad Aluminum (CCA)	п	Х		
Metal Cable Conduit		300 K		Х	Х
Superconductor Cable	YBCO, MgB ₂	20K	Х		
Current Leads	Metals, Cu or Al	300K <> 77K	Х		
Current Leads	Superconductor	77K <> 20K	Х		
Busbar	Superconductor or Metal	20K, 300K	Х	Х	
Cryoflex Tubing	Nexans, custom	20-80 K	Х		Х
T-Joint	YBCO <> Copper-clad-Al	20-30 K		Х	
High Voltage Cables		0-10 kV		Х	Х
Low> High Voltage Insu	lation	0-10 kV			Х
Circuit Breakers		DC			Х
Switches, Fault Current Li	imiters				Х
System Integration				Х	Х

AFRL/UDRI Project Task 2 Power Distribution System, Demo: 1 MW, 1kV, 1kA

1 MW, 1kV, 1 kA Der	no	Year 1	Year 2	Year 3
Hydrogen fluid flow	Х			
Cable Design	Х	Х		
Demo Design			Х	
High Voltage Test, Ca	ble			Х
Purchase, Build, Dem		Х	Х	
System Integrate				Х

Ultrapure Al 99.999+% wire for Aerospace lowest resistivity material that exists

given at EFATS 2022, August 30-31, 2022.

<u>Al,Cu Resistivity (ρ)</u>

Cu ρ_{300K} = 1.68*E-08 (Sumitomo) Al ρ_{300K} = 2,74*E-08 (Sumitomo)

Ohm's Law Heating of Wires

 $\mathbf{Q}_{heat} = \mathbf{R}^* \mathbf{I}^2$

 $Q_{heat} = (\rho/Area)*L*I^2$

To maintain $Q_{heat} = const$, for RRR \downarrow 30,000x, then Wire Area (A) \downarrow 30,000x !!

1000 1. Sumitomo Report "Refining Technology and Low Temperature Properties for High Purity Aluminum" 2013

High Ampacity Metal Wire/Busbar Options Ampacity Rating (A/mm²), 50°C Rise from ~ 294K

<u>Conditions</u>

- Air-cooled
- Ambient = 20-35°C
- Temp Rise = 40-50°C
- Amp values provided by companies, based on NEC rules

Ampacity Definition: Controlled by Ohms Law: $Q_{loss} = R * I^2$, $R = \rho * \frac{L}{A}$ Therefore: $J_e = \frac{Q_{loss}}{\rho * I_c}$

with Q_{loss} and $\rho \sim const$. J_e is the current level at which Ohmic heat loss can be managed, to prevent thermal runaway; depends on time-duration; e.g. steady-state, pulsed, etc..

given at EFATS 2022, August 30-31, 2022.

High Ampacity Metal Wire/Busbar Options Waste Heat (W/m), 50°C Rise from ~ 294K

<u>Conditions</u>

- Insulated wires
- Ambient = 20-35°C
- Temp Rise = 40-50°C
- Amp values provided by companies, based on NEC rules

High Power Al Busbars, with 0.6-38 kV conduits Mass Density (kg/m), 50°C Rise from ~ 294K

<u>Conditions</u>

- Insulated wires
- Ambient = 20-35°C
- Temp Rise = 40-50°C
- Amp values provided by companies, based on NEC rules

I-line[™] 600V is ~2x heavier than
Bus-zone[™]; 600V, much easier and
lower cost connections
Must compare full systems, and
not just busbars

HTS Cable, Y-Ba-Cu-O (YBCO) Conductor-Round-Core (CORC[™])

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Туре		HTS			I _c	I _c	HTS	
HTS		Cable	J _e	I _c	@ 20	@ 77	AC	
Cable	e	Mass	@ 4.2K	@ 4 K	K	K	Loss	Reference
- I		(kg/m)	(/ /mm ²)	(A)	(A)	(A)	(W)	
I			1					Wang X,
CORC			1					Supercond. Sci.
Cable			1					Technol. 31 (2018
C0b		0.036	1,198	12,402	~ 8,900	1,560	?	045007 (10pp)

Weight = 0.036 kg/m, for $I_c(20K) = 8,900$ A - Mass includes AI 99.999% former

Table 1. Parameters of the two types of CORC[®] wires used for the three-turn CCT magnets C0a and C0b.

		16-tape wire	29-tape wire
Magnet name	_	C0a	C0b
Wire diameter	mm	3.09	3.63
Diameter of Cu core	mm	2.34	2.56
Number of tapes		16	29
Tape width	mm	2	2
Cu plating thickness	μ m	5	5
Substrate thickness	μm	30	30
Cross sectional area	mm ²	7.5	10.35
Percentage of Cu area		62%	55%
Wire length	m	2.3	2.9

CORC[®] wire Mid-plane ILOTII-Berkeley-056-B Poles

Metal Busbar Options for ~ 8,000 Amps Liquid Cooling and AI 99.999% @ 20K

Water-cooled Cu @294K

*J*_a (8kA) ~ 3 A/mm² @ 294K

Hyperconducting Aluminum @ 20K

- ≥ 99.9999% purity, RRR > 1000
- $J_{a}(20K,H=1-2T) = 450-500 A/mm^{2}$
 - Weight(8kA) = 0.042 kg/m
 - Waste Heat (8kA) = 212 W/m
 - AI = 3.3x lighter than Cu !
- Ref. C. Oberly (RQQM), IEEE Trans. Magn.. 27(1), 458 (1991)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Cu_{0.15}Al_{0.85} Cuponal[™] @ 294K

Four bars ~ 7,000 Amps J_{a} (8kA) = 1.6 A/mm² Mass (8kA) = 20.7 kg/mWaste Heat (8kA) = 307 W/m

For metals: $J_c = \frac{Q_l}{\rho * Ic}; \quad \rho_{Al} = \frac{\rho_{Cu}}{500 \dots 8,000}$

Superconducting Cable Design, Nexans Including Cryocooling, example Option

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

https://www.nexans.de/eservice/Germany-en/navigatepub_251736_-30212/

Cu Metal Current Lead Options Waste Heat Generation (W)

Multiphysics Simulation Details

- COMSOL 5.3.0.223
- Heat transfer, AC/DC, structural mechanics modules
- Electromagnetic heating, magnetic fields, electric currents, thermal stress interfaces
- Cryogenic Young's mod, Poisson ratio, coefficient of thermal expansion, electric resistivity, magnetoresistance, thermal conductivity found in literature
- Elastic regime (no plastic deformation)
- Volume integrated joule heating and density to find total power and mass
- Fixed surface temperatures 30, 40, 50 K
- Fixed contact resistivity 0, 20, 200 $n\Omega^*cm^2$
- Three different sizes 1x, ~0.6x, and ~0.3x mass

Y-Ba-Cu-O Conductor-on-Round-Core (CORC[®]) Mechanical Connector Joints

6x1 CORC[®] CICC terminations and joints

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

 $Q_{loss} = R \times I^2$

Q_{loss}(20K, 10kA) ~ 1 W

J. Weiss, et al, MT 2019

CORC "Tee" joint distribution: 1 kV, 20 kA Main-Line \rightarrow 2.5 kA Motors

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

- To greatly reduce mass, use tapered and pre-tinned CORC cables and a staged T-shaped terminal.
- A bulge will be required near the junction to enhance current injection from the main cable to the 2.5 kA branch to a motor.
- Entire T-terminal can be made of Cu but more than 50% mass can be saved if the bulge volume is made of Al
- Bonding between AI/Cu is performed with shear and hydrostatic pressure
 - Heat Loss = 2-4 W @ 30K, 20 nΩ-m² (!)
 - Mass = 2.8 6.2 kg, varying with temp and power loss choice (!)

Lapovok "Bimetallic Copper-Aluminum tube by sever plastic deformation" (2012)

C. Kovacs, et al, *J. Phys. Conf. Series* **1975**, 012036 (2021)

Power Distribution Components

Parameterize Mass, Heat Loss Scaling for $0 \rightarrow 20,000$ Amps

Battery, Fuel-Cell \rightarrow Motor

Pink = large mass, heat loss

Power Transmission Cable Component		Mass Parameterization	Heat Loss Parameterization	Reference, Comments
Metal Cable ~ 300K, single	Cu _{0.2} Al _{0.8} Cuponal [™]	Mass(kg/m) = 0.0027*Wire(A)	Heat-Loss(W/m) = 0.0437*Wire(A)+45.14	www.bruker.com, ampacity tables
Metal Cable Conduit		don't have yet		
Current Lead 300K> 77K	$Cu_{0.2}Al_{0.8}$ Cuponal pair TM	Mass(kg) = 0.0062*Wire(A)-3.8606		1st estimate, Cuponal current lead
Current Lead 300K> 77K	Cu, pair	mass not provided	Heat-Loss(W) = 0.085*Wire(A)	1-stage, R.McFee, Rev Sci Instr. 30 , 98 (1959), asked for mass Cu/Bronze
Supercon Lead 77K> 20K	BSCCO ?, pair	Mass(kg) = 0.00066 *Wire(A)	Heat-Loss(W) = 0.00034*Wire(A)	HTS 110, private communication
Metal to Supercond Joint	Cu to YBCO, pair	~ zero, cable plugs insert into lead	Heat-Loss ~3-10W, 5-20 nOhm@20K, 15kA	Adv Cond Tech., EUCAS 2019
HTS Cable, single, "to"	YBCO CORC [™]	Mass(kg/m) = 4.0438 E-6 *Wire(A)	DC loss = 0, AC Loss Transients?	X. Wang, SuST 31 , 045007 (2018), info
HTS Cable, single 'from'	YBCO CORC [™]	Mass(kg/m) = 4.0438 E-6 *Wire(A)	DC loss = 0, AC Loss Transients?	" 8.9kA@20K, 3.63mm OD, 2.56 mm ID; Al
Hypercond Al Cable "to"	HP AI	Mass(kg/m) = 1.94 E-5 *Wire(A)	Heat-Loss(W/m) = 0.007155*Wire(A)	C. Oberly, IEEE Tr. Magn. 27(1) , 458 (1991)
Hypercond Al Cable "from"	HP AI	Mass(kg/m) = 1.94 E-5 *Wire(A)	Heat-Loss(W/m) = 0.007155*Wire(A)	C. Oberly, IEEE Tr. Magn. 27(1) , 458 (1991)
T-Connector, HTS to Metal	CORC [™] to Cu/Al	Mass(kg) = 0.0006*Wire(A)	Heat-Loss(W) = 0.00123*Wire(A)	AFRL Calc @30K; 50K is ~4x higher
Cryoflex Tubing	OD=34 mm, ID= 14 mm	Mass = 0.50 kg/m	Heat-Loss = 0.5-0.63 W/m @ 77K> 20K	Nexans COTS , other options possible

20,000 Amps for 1 kV = 20 MW Power; for one wing

Power Distribution Cable, Excel Calculator, V02 Outputs: Mass, Heat Loss of Components/System

			_		_		- •	- •			
			Bus	Bus	Bus	Piece	Piece	Piece	Piece		CHEETA V02
	Power Transmission		Power	Voltage	Current	Length	Mass	Heat	Mass	Piece	
	Cable Component		(kW)	(V)	(A)	(m)	(kg/m)	(W/m)	(kg)	Heat (W)	40 IVI <i>VV,</i> 1 KV, 40
Depends on Length	Metal Cable ~ 300K, single "to"	Cu _{0.2} Al _{0.8} Cuponal [™]	40000	1000	40,000	43.31	108.0	1,793	4,677	77,661	kA, 43.3m
	Metal Cable ~ 300K, single "from"	$Cu_{0.2}Al_{0.8}$ Cuponal TM	40000	1000	40,000	43.31	108.0	1,793	4,677	77,661	
	Metal Cable Conduit, pair		40000	1000	40,000	43.31					
	HTS Cable, single, "to"	YBCO CORC [™]	40000	1000	40,000	43.31	0.16	0	7	0	
	HTS Cable, single 'from'	YBCO CORC [™]	40000	1000	40,000	43.31	0.16	0	7	0	Almost
	Hypercond Al Cable "to"	HP AI	40000	1000	40,000	43.31	0.78	286	34	12,395	
	Hypercond Al Cable "from"	HP AI	40000	1000	40,000	43.31	0.78	286	34	12,395	zero mass
	Cryoflex Tubing	OD=34 mm, ID= 14 mm	40000	1000	40,000	43.31	0.50	1	22	27	
				Subtotals			218.4	4,159	9,458 180,140		
						# Pieces	kg/piece	W/piece			· 700/ of
Fixed	Current Lead 300K> 77K	Cu _{0.2} Al _{0.8} Cuponal pair [™]	40000	1000	40,000	1		ſ	244.1		>70% 01
(pieces)	Current Lead 300K> 77K	Cu, pair	40000	1000	40,000	1				3,400	supercond/cryo system
	Supercon Lead 77K> 20K	BSCCO ?, pair	40000	1000	40,000	1			26.40	24.00	
	Metal to HTS Joint	Cu to YBCO $CORC^{TM}$, pair	40000	1000	40,000	1			0.00	24.00	
	T-Connector, HTS to metal	CORC [™] to Al/Cu @30K	2500	1000	2,500	32	1.600	3.075	51.20	98.40	I
				Totals	Cu _{0.2} Al _{0.8}	Cuponal ^T	[™] Cable		9,355	155,322	Heavy,
IEEE CSC & ESA	S SUPERCONDUCTIVITY NEWS FORUM				Al Hyperc	ocnducto	r Cable		411	28,364	Hot!
given at EFATS	, January, 2023. This presentation was 2022, August 30-31, 2022.				УВСО СО	RC [™] Cab	le		357	3,574	

Power Distribution System - Mass, Heat Summary CHEETA Liquid H₂ Fuel Cell, 40 MW, 1 kV, 40 kA, 43 m length

3 Technology Solutions

	Cu _{0.15} Al _{0.85} Cuponal [™] @ 294K	Al > 99.999% Hyperconductor @ 20K	YBaCuO or MgB ₂ Superconductor @ 20-65K
/eight	9,355 kg (heavy!)	411 kg (light)	357 kg (light)
/aste Heat	155 kW (hot!)	28.5 kW (hot)	3.7 kW (cool!)
ost	medium	high	high
omplexity	low	medium	medium
RL Level	9	4	4, aircraft 9, CERN
rotection Risks	high	high	medium, (FCL intrinsic)

D

Power Distribution System - Mass, Heat Summary CHEETA Liquid H₂ Fuel Cell, 40 MW, 40 kA, 43.3 m length

3 Technology Options

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Ref. Schneider-Electric Cat # 5600CT9101, and email verify Wt(lb/ft) 5 Sept 2021 ± 270 V Bus is 'feasible", and 4.5x lower mass than 38kV Bus-zones[™], high voltage busway is ground not air-ready

Benefits of Superconductivity/Cryogenics for CHEETA VO2 Drivetrain System, ~ 8x lower mass, ~ 7x lower heat loads

Boeing 737-800 Class, 178 Passenger NASA ULI CHEETA V02, liquid-H₂ + fuel-cells 40 MW, 1 kV, 40 kA!, 43 m cable length

- Consider only major components so far

Cur	r <mark>rent Progress, N</mark>	lear-Term	Future Investment				
Power Density (kW/kg)	40 MW Power Mass (kg)	Efficiency	Waste Heat (kW)	Power Density (kW/kg)	40 MW Power Mass (kg)	Efficiency	Waste Heat (kW)
4	10,000	94	2400	40	1,000	99.8	80
20	2,000	98	800	40	1,000	99	400
4.28	9,350	99.61	156	112.00	357	100	0
20	2,000	98	800	40	1,000	99	400
13	3,077	96	1600	40	1,000	99.8	80
4	10,000	98 - ,	800	150	~ - 267	100	0
1.1 kW/kg	36,400 kg	<mark>83.6%</mark>	6,500 kW	8.7 kW/kg	4,600 kg	97.6%	960 kW
	Cur Power Density (kW/kg) 4 20 4.28 20 13 4 1.1 kW/kg	Current Progress, N Power Density (kW/kg) 40 MW Power Mass (kg) Mass (kg) 4 10,000 20 2,000 4.28 9,350 20 2,000 13 3,077 4 -10,000 1.1 kW/kg 36,400 kg	Current Progress, Near-Term Power Density (kW/kg) 40 MW Power Mass (kg) Efficiency 4 10,000 94 20 2,000 98 4.28 9,350 99.61 20 2,000 98 13 3,077 96 4 -10,000 98 - 1 -98 - 1 1.1 kW/kg 36,400 kg 83.6%	Current Progress, Near-TermPower Density (kW/kg)40 MW Power Dass (kg)EfficiencyWaste Heat (kW)410,000942400410,000942400202,000988004.289,35099.61156202,00098800133,0779616004-10,000 98 - 8008001.1 kW/kg36,400 kg83.6%6,500 kW	Current Progress, Near-Term Vaste Power Density Power Density 40 MW Power $Efficiency$ Waste Power Density (kW/kg) Mass (kg) $Efficiency$ Waste Power Density 4 10,000 94 2400 40 20 2,000 98 800 40 4.28 9,350 99.61 156 112.00 20 2,000 98 800 40 13 3,077 96 1600 40 4 -10,009 98 - 800 150 150 1.1 kW/kg 36,400 kg 83.6% 6,500 kW 8.7 kW/kg	Current Progress, Near-Term Future Invest Power Density (kW/kg) 40 MW Power Mass (kg) $Efficiency$ Waste Heat (kW) Power Density (kW/kg) 40 MW Power Mass (kg) 4 10,000 94 2400 40 1,000 20 2,000 98 800 40 1,000 4.28 9,350 99.61 156 112.00 357 20 2,000 98 800 40 1,000 13 3,077 96 1600 40 1,000 4 -10,000 98 - 800 150 -267 98 - 800 1.1 kW/kg 36,400 kg 83.6% 6,500 kW 8.7 kW/kg 4,600 kg	Future Investment Power Density (kW/kg) 40 MW Power Mass (kg) $Efficiency$ Waste Heat (kW) Power Density (kW/kg) 40 MW Power Mass (kg) $Efficiency$ 4 10,000 94 2400 40 1,000 99.8 20 2,000 98 800 40 1,000 99 4.28 9,350 99.61 156 112.00 357 100 20 2,000 98 800 40 1,000 99 13 3,077 96 1600 40 1,000 99.8 4 -10,00998 - 8 800 150 -267 -100 - 11 kW/kg 36,400 kg 83.6% 6,500 kW 8.7 kW/kg 4,600 kg 97.6%

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This presentation was given at EFATS 2022, August 30-31, 2022.

Larger than Passenger Load = 13,700 kg !! (won't work)

HEETA IIII Studios

Summary Points, 22.5 MW EWIS Scaling Calculator

Superconductors arguably the best option

- very low heat loss, easiest to manage (gas cooling only)
- ultralow volume and diameter, which reduces the impact of the cryoflex conduit
- cables expensive (?)
- Al 99.999% next best option
 - provides large reduction of weight
 - heat loss is not insignificant, and must be cooled with liquid H₂. This adds greater complexity, and thermal management/control issues.

• Operation at ±270 V @ 20K is considered a viable candidate, and is even 30x lighter

than Cu, AI at 294K, 30x less waste heat

- Scaling for all components to higher powers is not necessarily linear must study each component
- Design and operation of components can be complex -

- trade options possible; e.g. can swap mass and waste-heat

Acknowledgements

Questions?

This work was supported by NASA under award number 80NSSC19M0125 as part of the Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)