

NdFeAsO thin films: K. Kondo, M. Chen, T. Hatano, H. Ikuta

Dept. Materials Physics, Nagoya University

(Ba,K)122 thin films: D. Qin, M. Naito, A. Yamamoto Dept. of Applied Physics, Tokyo University of Agriculture & Technology

Microstructure: Z. Guo, H. Gao, H. Saito, S. Hata Dept. of Advanced Materials Science & The Ultramicroscopy Research Center, Kyushu University

High-field transport properties: C. Tarantini, J. Hänisch ASC NHMFL & Florida State University

Inst. for Technical Physics, Karlsruhe Institute of Technology

122

FeAs or FeSe or FeTe tetrahedron

- ✓ Common structure
- ✓ Important role for superconductivity

J. Hänisch, K. lida, C. Tarantini, R. Hühne, Sust 32, 093001 (2020).

FeAs or FeSe or FeTe tetrahedron

- ✓ Common structure
- ✓ Important role for superconductivity

J. Hänisch, K. lida, C. Tarantini, R. Hühne, Sust 32, 093001 (2020).

FeAs or FeSe or FeTe tetrahedron

- ✓ Common structure
- ✓ Important role for superconductivity

J. Hänisch, K. lida, C. Tarantini, R. Hühne, Sust 32, 093001 (2020).

✓ $J_c \sim 8 \text{ MA/cm}^2$ for NdFeAs(O,F)

- ✓ $J_c \sim 8 \text{ MA/cm}^2$ for NdFeAs(O,F)
- ✓ Higher the J_d , higher the J_c
- ✓ Depairing current density J_d (theoretical upper limit) $J_d(T) = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2(T)\xi(T)}$

- ✓ $J_c \sim 8 \text{ MA/cm}^2$ for NdFeAs(O,F)
- ✓ Higher the $J_{\rm d}$, higher the $J_{\rm c}$
- ✓ Depairing current density J_d (theoretical upper limit) $J_d(T) = \frac{\phi_0}{3\sqrt{3}\pi\mu_0\lambda^2(T)\xi(T)}$
- ✓ Over-doping increase J_d , and hence J_c
 - * A. Stangl et al., Sci. Rep. 11, 8176 (2021).

Combining over-doping and microstructural modification

IEEE-CSC, ESAS, and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2023. Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy ** M. Miura et al., *NPG Asia Mater.* **14**, 85 (2022).

* A. Stangl *et al.*, *Sci. Rep.* **11**, 8176 (2021).

9

Solubility limit depends on F and H

*Ln*FeAsO (*Ln*: lanthanoide) $0^{2-} \rightarrow \mathbf{F}^{-} \text{ or } \mathbf{H}^{-} + e^{-}$ (electron doping) b) SmFeAsO_{1-x}F_x **F-substitution** $SmFeAsO_{1-x}H_x$ H-substitution 150 Tet./PM Orth.1 00 AFM1 Orth.2 50 to ~0.8 SC AFM2 0.6 0.8 0 0 4

S. limura *et al., J. Asia Ceramic Societies* **5**, 357 (2017).

 Substitution level is limited up to ~0.2 (For SmFeAsO_{1-x}F_x)

- For H, the substitution level is increased up to ~0.8
- Heavily electron doped film can be obtained
- T_c keeps constant around 50 K up to x=0.4

*Ln*FeAsO: penetration depth and coherence length

 \bigcirc

 $> \lambda$ of *Ln*FeAsO may be decreased with electron doping

> No clear relation between ξ and electron doping

H. Luetkens *et al.*, *Phys. Rev. Lett.* **101**, 097009 (2008).
 J. Kacmarcik *et al.*, *Phys. Rev. B* **80**, 014515 (2009).
 A. Adamski *et al.*, *Phys. Rev. B* **96**, 100503 (2017).
 S. Weyeneth *et al.*, J. Supercond. Nov. Magn. **22**, 325 (2009).

[5] A. J. Drew *et al.*, *Phys. Rev. Lett.* **101**, 097010 (2008).
[6] U. Welp *et al.*, *Phys. Rev. B* **83**, 100513 (2011).
[7] H-S. Lee *et al.*, *Phys. Rev. B* **80**, 144512 (2009). 11

> A constant T_c of ~ 50 K up to c~8.54 Å, corresponding to carrier density n~2×10²¹ /cm³

- > c varied in a wide range, 8.44 Å and 8.55 Å with $T_c \sim 50$ K [NdFeAs(O,H)]
- ➤ The maximum n was around 6×10²¹ /cm³ [almost 3 times higher than NdFeAs(O,F)]

J_c -H for NdFeAs(O,H) is higher than that for NdFeAs(O,F)

 \bigcirc

J_c(4 K, 0 T)>17 MA/cm², which is twoie larger than NdFeAs(O,F)
 c.f.) 20 MA/cm² for the irradiated SmFeAs(O,F) single crystal ^[1]
 E of NdFoAc(O H) is 1 E times higher than that of NdFoAc(O E)

 \succ F_p of NdFeAs(O,H) is 1.5 times higher than that of NdFeAs(O,F)

F. Fang et al., Nat. Commun. 4, 2655 (2013).

- Upper critical field H_{c2} of NdFeAs(O,H) is almost comparable to that of NdFeAs(O,F)
- Irreversibility field H_{irr} of NdFeAs(O,H) is higher than that of NdFeAs(O,F)

-> Due to the decrease in the anisotropy $H_{\rm irr} \propto \frac{H_{\rm c2}}{\nu^2}$ for $H \parallel c$

Band calculation

 \bigcirc

V. Vildosola et al., PRB 78, 064518 (2008).

Y. Muraba et al., PRB 89, 094501 (2014).

IEEE-CSC, ESAS, and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2023. Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy

K-doped AEFe₂As₂: Only epitaxial thin film has not been realised

 \bigcirc

- ✓ T_c^{max} ~38 K
- ✓ $J_{\rm d}$ ~170 MA/cm²
- ✓ γ~1−2

Single crystals

Y. Liu et al., PRB 89, 13504 (2014).

Polycrystalline bulk

Wires

H. Hosono *et al., Mater. Today 21*, 278 (2018).

J. Weiss *et al., SuST 28*, 112001 (2015).

- ✓ High $T_c \sim 38$ K, high $J_d \sim 170$ MA/cm² & low electromagnetic anisotropy
- ✓ The most promising material for applications (e.g. PIT wires and bulk magnets)
- ✓ All material forms except for epitaxial thin films have been available

K-doped Ba122 epitaxial thin film on CaF₂ sub.

Substrates	Bi-crystal	Substrates	Bi-crystal
CaF ₂ (001)	Not available	LSAT ¹⁾ (001)	Available
MgO (001)	Available	Al ₂ O ₃ (0001)	Available
SrTiO ₃ (001)	Available	¹⁾ $La_{0.3}Sr_{0.7}AI_{0.65}Ta_{0.35}O_3$	

Substrates	Bi-crystal	Substrates	Bi-crystal
CaF ₂ (001)	Not available	LSAT (001)	Available
MgO (001)	Available	Al ₂ O ₃ (0001)	Available
	Available	¹⁾ La _{0.3} Sr _{0.7} Al _{0.65} Ta _{0.35} O ₃	

- \Rightarrow Oxygen is released during deposition (SrTiO₃)
- \Rightarrow Reaction layer is present at the interface (LSAT)
- Ba122 grows epitaxially on MgO

 \geq (Ba,K)Fe₂As₂ was not epitaxially grown -> due to the low growth temperature (cf. 800°C for Co-^[1] and P-doped^[2] Ba122)

 \geq 30° rotated grains were present

[1] T. Katase *et al., SuST* **25**, 084015 (2012). [2] S. Adachi *et al.*, *SuST***25**, 105015 (2012).

Strategy for K-doped Ba122 on MgO

K-doped Ba122 grown on Ba122-buffered MgO(001)

The 00/peaks arising from K-doped Ba122 and Ba122 were observed

K-doped Ba122 was grown epitaxially on Ba122-buffered MgO

 \succ T_c of K-doped Ba122 was 37.5 K

K-doped Ba122 bicrystals are realised

 \bigcirc

Structurally fine K-doped Ba122 films are grown on MgO bi-crystal substrates

> Microbridge was fabricated by all dry processes (Ar ion etching or laser cutting)

Transport properties of K-doped Ba122 bicrystals

IEEE-CSC, ESAS, and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2023. Invited presentation given at EUCAS 2023, Sept. 5, 2023, Bologna, Italy

 \bigcirc

> Even at 12 K and 20 K, inter-grain J_c of K-doped Ba122

is higher than those of other IBS [Co-doped Ba122 (12

K), Fe(Se,Te) (4 K), NdFeAs(O,F) (4 K)]

> Critical grain boundary angle θ_c of (Ba,K)122 is ~9°,

similarly to other

Transport properties of K-doped Ba122 bicrystals

 \bigcirc

> Even at 12 K and 20 K, inter-grain J_c of K-doped Ba122

is higher than those of other IBS [Co-doped Ba122 (12

K), Fe(Se,Te) (4 K), NdFeAs(O,F) (4 K)]

 \succ Critical grain boundary angle θ_c of (Ba,K)122 is ~9°,

similarly to other IBS

> The θ_c of (Ba,K)122 is unchanged by applied magnetic

fields (c.f. Co-doped Ba122)

- 1. Over-doped NdFeAsO showed a high J_c and low anisotropy
 - -> The strategy for over-doping method can be applicable
- 2. Low angle GBs and their networks work as strong pinning centers in Kdoped Ba122
- 3. Inter-grain J_c exceed 1 MA/cm² even at θ_{GB} =24° and 12 K
- 4. The critical angle θ_c for all IBSs seem to be ~9°
- 5. The θ_c for K-doped Ba122 is unchanged by magnetic field