High-Rate and Homogenous Production of BMO-Doped REBCO Coated Conductor by IBAD and Hot-Wall PLD Process

<u>Y. lijima</u>, M. Ohsugi, K. Kakimoto, S. Muto, W. Hirata, S. Fujita, N. Nakamura, S. Hanyu and M. Daibo

Fujikura Ltd.

Acknowledgement:

We appreciate Prof. T. Kiss at Kyushu Univ. and Prof. S. Awaji at Tohoku Univ. for collaboration to sample evaluation. A part of this work was also performed at the High Field Laboratory for Superconducting Materials, IMR, Tohoku University.

These works include results obtained from *"Promotion Technology Development for Realization of HTS Applications(2016-2020)"* being consigned or subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Contents

Demands on REBCO C.C. for high field magnet applications High rate and Homogenous REBCO wires by IBAD/Hot-wall PLD

- Advantage of PLD processed REBCO films :
- High in-field Jc properties with high throughput and good homogeneity
 - High rate, non-equilibrium, but controllable and stable growth with favorable pinning defects come from rapid and fine evaporation by high fluence UV pulse irradiation
 - Drastic advancement of high-powered UV pulsed laser by FPD industry
 - □ Hot-wall architecture: temperature stability improvement in large growth area

□ Current status of Fujikura REBCO C.C.

- >1km long uniformity improvement
 - Uniformity evaluation by 10 T test magnet
- Mechanical strength evaluation

□ Summary

Application R&D of REBCO Coated Conductor

Business scale HF applications urged investment for C.C. production

Compact fusion reactor R&D (2022~)

REBCO wire demand up to 10000s km/prototype reactor

Toroidal field ~9T (ITER/DEMO ~6T)

Small diameter, lower cost thinner shielding blanket than conservative design

t than http://news.mit.edu/201.0small -modular-efficient-lesion-plant-0818.0 Big

https://ir.bruker.com/press-releases/press-release-details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx

1.2 GHz NMR 28.2 T magnet with 54 mm bore I.0 GHz NMR with compact 23.5 T magnet Iongitudinal Uniformity of in field I_c strongly required

High **Productivity** of wire required with high in-field I_c at 20 K, 20 T, within affordable cost and I_c variations

lower neutron radiation damage favorable

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

Fujikura's 2G HTS wires processed by IBAD/PLD method

Developed in NEDO/METI programs of:

"Super-GM" (1989-1999)

"Fundamental Technologies for Superconductivity Applications I/II" (1998-2007) "Project to Promote Commercialization of High-Temperature Superconductivity Technology" (2016-2018) IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue N

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand 5

Pulsed Laser Deposition: fast & controllable, non-equilibrium process

Fast and Controllable non-equilibrium process rapid and fine evaporation by UV pulse laser

- Very high supersaturated growth with high adatom mobility
 - Very fast growth rate with good textured matrix
 - Dense small size secondary growth and defects suitable for flux pinning
- Stable controllability of simple depo. parameters as
 - Low fluctuation of elemental composition
 - Large window for oxygen pressure

Fujikura

Stable deposition condition for productive long length process

J. L. MacManus-Driscoll & S. C. Wimbush:

"Processing and application of high-temperature superconducting coated conductors" Nature Reviews Materials **vol. 6**, pages 587–604 (2021)

High supersaturation →dense, small defects

Development of High-Powered Excimer Laser for TFT annealing

Development of large area substrate heating :Hot-wall PLD

Key issues for REBCO wire : "High in-field I_c & Reproducibility" "Long-length & Longitudinal I_c uniformity"

Depends strongly on temperature stability during reel-to-reel continuous deposition

Hot-wall PLD system has furnace-like stable substrate heating

Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

RE elemental dependent growth stability for BMO-REBCO

FIB-SEM 3D observation on misoriented grains (mainly a-axis aligned normal) for thick BMO-REBCO films

BaHfO-GdBaCuO

https://www.jfcc.or.jp/re sult/16r33.html

BaHfO-EuBaCuO

D. Yokoe et al., Supercond.Sci.Technol. **33** (2020) 024002 T. Yoshida et al., Physica C **504** (2014) 42

Typical J_c -B characteristics for BHO-EuBCO and pristine GdBCO, YBCO films

Thickness dependence for in-field *I_c* properties of BHO-EuBCO

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

Growth rate dependence for I_c properties of BMO-EuBCO

EuBCO-HfBaO₃

B Fast:

Scattered short nanorods observed in high-growth rate FAST samples c/l_{c0}

100

150

Deposition rate [a. u.]

40 K, 5 T 10 B//c

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

20 K, 5 T

B//c

Α

pure EußCO

Π

50

ϑ[deg]

Typical Specifications of 2G HTS Tape at Fujikura

Products	Width	Thickness	Substrate [µm]	Stabilizer [µm] *5	ADC Option	Critical Current [A]	
	[mm]	[mm]			APC Option	77K, S.F.	20K, 5T (Ref.) *4
FYSC-SCH04	4	0.13	75	20	Non-AP *2	≥ 165	368
FYSC-SCH12	12	0.13	75	20	Non-AP *2	≥ 550	1,104
FYSC-S12 *1	12	0.08	75	_	Non-AP *2	≥ 550	_
FESC-SCH02	2	0.11	50	20	AP *3	≥ 30	257
FESC-SCH03	3	0.11	50	20	AP *3	≥ 63	497
FESC-SCH04	4	0.11	50	20	AP *3	≥ 85	663
FESC-SCH04(05)	4	0.07	50	5	AP *3	≥ 85	663
FESC-SCH12	12	0.11	50	20	AP *3	≥ 250	1,990
FESC-S12 *1	12	0.06	50	_	AP *3	≥ 250	_

*1 Non-copper stabilizer specification is available in only 12mm-wide for current lead or low thermal conducting applications.

*2 Non-AP specification is mainly for conductors or other general use at relatively higher temperature.

*3 Artificial pinning specification is mainly for use in magnet applications at low temperature and high magnetic field.

*4 Ic@20K, 5T is a reference value and no guarantee of the actual performance.

*5 If requested, an option **customizing copper plating thickness is also available**. (e.g., 5µm, 10µm or 40µm)

• FYSC(w/o APC) is mainly for power cables or other general use at relatively higher temperature.

FESC(w/ APC) is recommendable for use in magnet applications at lower temperature and higher field.

		Stabilizer [Cu plating] 20µm ————————————————————————————————————
/ Ni-Alloy tape	Cu plating	Protection layer [Ag] 2µm — Superconducting Layer [GdBCO] 2 µm / [EuBCO+BHO] 2.5 µm
		Buffer layer [MgO, etc.] 0.7µm
		Substrate [Hastelloy®] 75 / 50 µm
- Fuiikur	a	IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024, 12

/Cohomotic of DE boood UTC tono>

Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

In-field *I*c Performance – FESC type – (AP)

J_e=595 A/mm² @30K,7T B//c 681A@30K, 2T 448A@30K, 5T 663A@20K, 5T **FYSC** tape 357A@30K, 7T 412@20K, 10T 753A@4.2K, 10T 10mm^w 242A@50K, 3T 6000 542A@4.2K, 16T Bllc Bllab 5000 GdBCO 10³ [A/cm-w] 4000 Pure 3000 Ic [A] (4mm wide) **4.2K-AP** 2000 _0 **10K-AP** 1000 • 4.2 K. 5T 0 20K-AP 5 -45 \cap 45 90 135 0 4.2 K, 10T 10² θ [deg.] • 20 K. 5T **40K-AP 30K-AP FESC** 0 20 K, 10T **50K-AP** ▲ 30 K, 5T 10mm^w 6000 △ 30 K, 10T 4mm^w Bllc Bllab 77.3K-AP **65K-AP** 5000 10¹ EuBCO-BHO 4000 FAST [A/cm-w] 0.0 5.0 10.0 15.0 20.0 25.0 3000 Perpendicular Magnetic Field (B//c) [T] ~ 2000

AP specification is recommendable for use in magnet applications at lower temperature and higher magnetic field.

Fujikura

1000

-45

vvvvvvvvvv

45

θ [deg.]

0

A AMANA

90

135

тоноки

UNIVERSITY

Example data of longitudinal I_c distribution of 4mm-wide tape

■ Magnetic measurement @Tapestar[™] (4mm-wide with APC / FESC-SCH04)

Example data of longitudinal I_c distribution of 2mm-wide tape

2 mm-wide tape: FESC-SCH02

4-terminal method current conduction measurement at every 4.7 m

Magnetic measurement @Tapestar[™] (2mm-wide with AP / FESC-SCH02)

Lot-to-lot in-field I_c distribution of 4 mm^w wire

■ rot-to-rot variation of in-field *I*_c / *I*_c (77 K, s.f.)

Good correlation to self field I_c and infield I_c observed for both EuBCO+BHO and pristine GdBCO

A 10T small test coil at Fujikura Ltd.

Parameters	REBCO tape Cross section		Cross section	$77K70K65K$ Col overall I_c [A] $E_c = 0.1 \mu$ V/cm
Substrate thick.	50 µm			60K 50K 40K 36K 32K 450 Calculated result
Copper thick.	20 μm×2 (plates)+ 300 μ m		Copper tape	Σ 350 400 350 350
Type of HTS tape	FESC-SCH04			Experimental
Insulation	Fluorine coating polyimide tape/Polyimide tape		2G HTS tape	1.0E-04 1.0
Width/Thickness	4.1 mm / 0.47 mm		1 -	1 OF-05
Parameters	10 T test coil		ID50mm	0 100 200 300 400 500 30 40 50 60 70 80 Current [A] Temperature [K]
Inner diameter	50 mm			Screening Current induced Field
Outer diameter	146 mm		OD~146mm	든 0.4
Coil height	166 mm		×16	0.2 Experiment
Impregnation	Epoxy resin			nput 0.1
No. of pan cake	32 (2×16)			
Number of turns	2976 (93×32)			en -0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tape length	0.9 km			ÿ _{-0.3}
l _{op}	300 A	500 A		0 100 200 300 400 500 600 Current[A]
B ₀	5.8 T	9.7 T		
Stored energy	13 kJ	35 kJ		Good agreement between experimental
Load factor at 20 K	44% 73%		A CONTRACTOR OF THE OWNER	and calculated results for coil Ic and
🕝 Fujik	ษาบ		Φ 150mm	Screening current induced field . IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 55, January, 2024. 17 Invited presentation given at ISS 2023, Nov. 29, 2023, Wellington, New Zealand

REBCO Thickness Dependence of Tensile Properties

The FESC (BMO-doped EuBCO) had,

- slightly smaller e_{irr} value due to the thicker REBCO layer: 2.5 μ m.

- The REBCO thickness dependence of \mathbf{e}_{irr} is due to the volume effect, which is general phenomena in ceramics. $\bar{\varepsilon} = \varepsilon_0 \Gamma \left(1 + \frac{1}{m}\right) \left(\frac{V}{V_0}\right)^{-\frac{1}{m}} \propto V^{-\frac{1}{m}} \propto (\text{REBCO thickness})^{-\frac{1}{m}}$

18

Copper Thickness Dependence of Tensile Properties

• The tensile properties of copper-plated HTS tapes with **various copper thicknesses** were investigated.

- Young's modulus and Irreversible stress decreased with increasing copper thickness.
 - \rightarrow Due to the increasing ratio of copper, which has lower stiffness than Hastelloy.
- On the other hand, Irreversible strain increased with increasing copper thickness.

niiknua

→ Due to compressive strain caused by the difference in coefficient of thermal expansion (ΔCTE) between Hastelloy and copper.

Cyclic Fatigue Tests

 In the high field magnet, HTS tapes are repeatedly subjected to tensile load by electromagnetic force. It is necessary to evaluate the fatigue characteristics of the HTS to ensure long-term reliability.
 → Fast cycle repeated tensile tests are performed in LN₂.

S-N curve (Stress - Number of cycle to fracture)

- Tensile strength decreased due to fatigue of metal components of the HTS tape.
- The samples fractured before I_c degradation, below 600 MPa.

S. Fujita, et al., IEEE Trans. Appl. Supercond. 30-4 (2020) 8400205

Summary

□ Business scale demands for high field applications urged investment

□ High rate & homogenous REBCO wires by IBAD/Hot-wall PLD

- Advantage of Hot-wall PLD processed REBCO films :
 - **\square** High & homogenous in-field J_c properties coincide with high throughput
 - Growth stability of thick EuBCO-BHO allows minimal longitudinal in-field J_c perturbation
 - No dependence observed of in-field J_c lift factors on deposition rate at 20K 20T
 - Long length homogeneity
 - 1.4 km long uniform 4mm width sample obtained
 - Good consistency of 10-T magnet coil Ic with numerical simulation confirmed conductor uniformity
 - Good mechanical strength
 - Stable tensile strength accountable by thicknesses of wire components
 - Cyclic fatigue determined by strength of metal components

IBAD/PLD is a reliable choice for investment as large production with sufficient quality for HF application though additional cost of High-powered UV lasers

END

Thank you for attention

